Table of Contents Author Guidelines Submit a Manuscript
Mathematical Problems in Engineering
Volume 2012 (2012), Article ID 506709, 10 pages
http://dx.doi.org/10.1155/2012/506709
Research Article

PV Maximum Power-Point Tracking by Using Artificial Neural Network

1Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz 51666-16471, Iran
2Department of Mechanical and Industrial Engineering, Concordia University, Montreal, QC, Canada

Received 6 July 2011; Revised 6 November 2011; Accepted 30 November 2011

Academic Editor: Mohammad Younis

Copyright © 2012 Farzad Sedaghati et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. J. Lee, H. Y. Park, G. H. Kim et al., “The experimental analysis of the gridconnected PV system applied by POS MPPT,” in Proceedings of the International Conference on Electrical Machines and Systems (ICEMS '07), pp. 1786–1791, Seoul, Korea, October 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. H. H. Lee, L. M. Phuong, P. Q. Dzung, N. T. Dan Vu, and L. D. Khoa, “The new maximum power point tracking algorithm using ANN-based solar PV systems,” in Proceedings of the IEEE Region 10 Conference (TENCON '10), pp. 2179–2184, Fukuoka, Japan, November 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. H. S. Rauschenbach, Solar Cell Array Design Handbook, Van Nostrand Reinhold, NewYork, NY, USA, 1980.
  4. M. G. Villalva, J. R. Gazoli, and E. R. Filho, “Comprehensive approach to modeling and simulation of photovoltaic arrays,” IEEE Transactions on Power Electronics, vol. 24, no. 5, pp. 1198–1208, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. F. Lasnier and T. G. Ang, Photovoltaic Engineering Handbook, Adam Hilger, New York, NY, USA, 1990.
  6. W. De Soto, S. A. Klein, and W. A. Beckman, “Improvement and validation of a model for photovoltaic array performance,” Solar Energy, vol. 80, no. 1, pp. 78–88, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. Q. Kou, S. A. Klein, and W. A. Beckman, “A method for estimating the long-term performance of direct-coupled PV pumping systems,” Solar Energy, vol. 64, no. 1–3, pp. 33–40, 1998. View at Publisher · View at Google Scholar · View at Scopus
  8. A. Driesse, S. Harrison, and P. Jain, “Evaluating the effectiveness of maximum power point tracking methods in photovoltaic power systems using array performance models,” in Proceedings of the IEEE 38th Annual Power Electronics Specialists Conference (PESC '07), pp. 145–151, Orlando, Fla, USA, June 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. K. Nishioka, N. Sakitani, Y. Uraoka, and T. Fuyuki, “Analysis of multicrystalline silicon solar cells by modified 3-diode equivalent circuit model taking leakage current through periphery into consideration,” Solar Energy Materials and Solar Cells, vol. 91, no. 13, pp. 1222–1227, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. T. Esram and P. L. Chapman, “Comparison of photovoltaic array maximum power point tracking techniques,” IEEE Transactions on Energy Conversion, vol. 22, no. 2, pp. 439–449, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. V. Salas, E. Olías, A. Barrado, and A. Lázaro, “Review of the maximum power point tracking algorithms for stand-alone photovoltaic systems,” Solar Energy Materials and Solar Cells, vol. 90, no. 11, pp. 1555–1578, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. O. Wasynczuk, “Dynamic behavior of a class of photovoltaic power systems,” IEEE Transactions on Power Apparatus and Systems, vol. 102, no. 9, pp. 3031–3037, 1983. View at Publisher · View at Google Scholar · View at Scopus
  13. E. Koutroulis, K. Kalaitzakis, and N. C. Voulgaris, “Development of a microcontroller-based, photovoltaic maximum power point tracking control system,” IEEE Transactions on Power Electronics, vol. 16, no. 1, pp. 46–54, 2001. View at Publisher · View at Google Scholar · View at Scopus
  14. K. H. Hussein, I. Muta, T. Hoshino, and M. Osakada, “Maximum photovoltaic power tracking: an algorithm for rapidly changing atmospheric conditions,” IEE Proceedings: Generation, Transmission and Distribution, vol. 142, no. 1, pp. 59–64, 1995. View at Publisher · View at Google Scholar · View at Scopus
  15. J. J. Schoeman and J. D. van Wyk, “A simplified maximal power controller for terrestrial photovoltaic panel arrays,” in Proceedings of the IEEE 13th Annual Power Electronics Specialists Conference (PESC '82), pp. 361–367, 1982. View at Publisher · View at Google Scholar
  16. M. A. S. Masoum, H. Dehbonei, and E. F. Fuchs, “Theoretical and experimental analyses of photovoltaic systems with voltage- and current-based maximum power-point tracking,” IEEE Transactions on Energy Conversion, vol. 17, no. 4, pp. 514–522, 2002. View at Publisher · View at Google Scholar · View at Scopus