Table of Contents Author Guidelines Submit a Manuscript
Mathematical Problems in Engineering
Volume 2012 (2012), Article ID 578719, 16 pages
http://dx.doi.org/10.1155/2012/578719
Research Article

Dual-EKF-Based Real-Time Celestial Navigation for Lunar Rover

1Department of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China
2Zhejiang Provincial Key Laboratory of Information Network Technology, Hangzhou 310027, China
3The Department of Electrical, Computer, Software, and Systems Engineering, Embry-Riddle Aeronautical University, Daytona Beach, FL 32114, USA
4School of Information Science and Technology, East China Normal University, Shanghai 200241, China

Received 27 December 2011; Accepted 14 February 2012

Academic Editor: Carlo Cattani

Copyright © 2012 Li Xie et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. U. Henning, “A short guide to celestial navigation,” 2006, Germany, http://www.celnav.de.
  2. E. Krotkov, M. Hebert, M. Bufa et al., “Stereo driving and position estimation for autonomous planetary rovers,” in Proceedings of the IARP Workshop on Robotics in Space, Montreal, Canada, 1994.
  3. R. Volpe, “Mars rover navigation results using sun sensor heading determination,” in Proceedings of the IEEE/RSJ International Conference on Intelligent Robot and Systems, pp. 460–467, Kyongju, Korea, 1999.
  4. P. M. Benjamin, Celestial Navigation on the Surface of Mars, Naval Academy, Annapolis, Md, USA, 2001.
  5. Y. Kuroda, T. Kurosawa, A. Tsuchiya, and T. Kubota, “Accurate localization in combination with planet observation and dead reckoning for lunar rover,” in Proceedings of the IEEE International Conference on Robotics and Automation (ICRA '04), pp. 2092–2097, New Orleans, La, USA, May 2004. View at Scopus
  6. J. C. Fang, X. L. Ning, and Y. L. Tian, Spacecraft Autonomous Celestial Navigation Principles and Methods, National Defense Industry Press, Beijing, China, 2006.
  7. S. Y. Chen, Y. F. Li, and J. W. Zhang, “Vision processing for realtime 3D data acquisition based on coded structured light,” IEEE Transactions on Image Processing, vol. 17, no. 2, pp. 167–176, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. S. Y. Chen, Y. H. Wang, and C. Cattani, “Key issues in modeling of complex 3D structures from video sequences,” Mathematical Problems in Engineering, vol. 2012, Article ID 856523, 17 pages, 2012. View at Publisher · View at Google Scholar
  9. A. Trebi-Ollennu, T. Huntsberger, Y. Cheng, E. T. Baumgartner, B. Kennedy, and P. Schenker, “Design and analysis of a sun sensor for planetary rover absolute heading detection,” IEEE Transactions on Robotics and Automation, vol. 17, no. 6, pp. 939–947, 2001. View at Publisher · View at Google Scholar · View at Scopus
  10. K. S. Ali, C. A. Vanelli, J. J. Biesiadecki et al., “Attitude and position estimation on the Mars exploration rovers,” in Proceedings of the IEEE Systems, Man and Cybernetics Society, International Conference on Systems, pp. 20–27, The Big Island, Hawaii, USA, October 2005. View at Scopus
  11. F. Z. Yue, P. Y. Cui, H. T. Cui, and H. H. Ju, “Algorithm research on lunar rover autonomous heading detection,” Acta Aeronautica et Astronautica Sinica, vol. 27, no. 3, pp. 501–504, 2006 (Chinese). View at Google Scholar · View at Scopus
  12. F. Z. Yue, P. Y. Cui, H. T. Cui, and H. H. Ju, “Earth sensor and accelerometer based autonomous heading detection algorithm research of lunar rover,” Journal of Astronautics, vol. 26, no. 5, pp. 553–557, 2005 (Chinese). View at Google Scholar · View at Scopus
  13. S. Y. Chen, Y. F. Li, and M. K. Ngai, “Active vision in robotic systems: a survey of recent developments,” The International Journal of Robotics Research, vol. 30, no. 11, pp. 1343–1377, 2011. View at Publisher · View at Google Scholar
  14. M. W. L. Thein, D. A. Quinn, and D. C. Folta, “Celestial navigation (CelNav): lunar surface navigation,” in Proceedings of the AIAA/AAS Astrodynamics Specialist Conference and Exhibit, Honolulu, Hawaii, USA, August 2008. View at Scopus
  15. X. L. Ning and J. C. Fang, “Position and pose estimation by celestial observation for lunar rovers,” Journal of Beijing University of Aeronautics and Astronautics, vol. 32, no. 7, pp. 756–759, 2006 (Chinese). View at Google Scholar · View at Scopus
  16. X. L. Ning and J. C. Fang, “A new autonomous celestial navigation method for the lunar rover,” Robotics and Autonomous Systems, vol. 57, no. 1, pp. 48–54, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. F. J. Pei, H. H. Ju, and P. Y. Cui, “A long-range autonomous navigation method for lunar rovers,” High Technology Letters, vol. 19, no. 10, pp. 1072–1077, 2009 (Chinese). View at Publisher · View at Google Scholar · View at Scopus
  18. X. N. Xi, Lunar Probe Orbit Design, National Defense Industry, Beijing, China, 2001.
  19. E. A. Wan and A. T. Nelson, “Dual extended kalman filter methods,” in Kalman Filtering and Neural Networks, John Wiley & Sons, New York, NY, USA, 2001. View at Google Scholar
  20. S. Y. Chen, “Kalman filter for robot vision: a survey,” IEEE Transactions on Industrial Electronics, vol. 59, no. 99, 2012. View at Publisher · View at Google Scholar
  21. S. G. Kim, J. L. Crassidis, Y. Cheng, A. M. Fosbury, and J. L. Junkins, “Kalman filtering for relative spacecraft attitude and position estimation,” in Proceedings of the AIAA Guidance, Navigation, and Control Conference, pp. 2518–2535, San Francisco, Calif, USA, August 2005. View at Scopus
  22. Z. W. Liao, S. X. Hu, D. Sun, and W. Chen, “Enclosed laplacian operator of nonlinear anisotropic diffusion to preserve singularities and delete isolated points in image smoothing,” Mathematical Problems in Engineering, vol. 2011, Article ID 749456, 15 pages, 2011. View at Publisher · View at Google Scholar · View at Scopus
  23. Z. W. Liao, S. X. Hu, M. Li et al., “Noise estimation for single-slice sinogram of low-dose x-ray computed tomography using homogenous patch,” Mathematical Problems in Engineering, vol. 2012, Article ID 696212, 16 pages, 2012. View at Publisher · View at Google Scholar
  24. J. W. Yang, Z. Chen, W. S. Chen, and Y. Chen, “Robust affine invariant descriptors,” Mathematical Problems in Engineering, vol. 2011, Article ID 185303, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. J. W. Yang, M. Li, Z. Chen et al., “Cutting affine invariant moments,” Mathematical Problems in Engineering. In press. View at Publisher · View at Google Scholar
  26. M. Li, “Fractal time series—a tutorial review,” Mathematical Problems in Engineering, vol. 2010, Article ID 157264, 26 pages, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. C. Cattani, “Fractals and hidden symmetries in DNA,” Mathematical Problems in Engineering, vol. 2010, Article ID 507056, 31 pages, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. L. Gottschalk, E. Leblois, and J. O. Skøien, “Correlation and covariance of runoff revisited,” Journal of Hydrology, vol. 398, no. 1-2, pp. 76–90, 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. E. Pardo-Igúzquiza, K. V. Mardia, and M. Chica-Olmo, “MLMATERN: a computer program for maximum likelihood inference with the spatial Maérn covariance model,” Computers and Geosciences, vol. 35, no. 6, pp. 1139–1150, 2009. View at Publisher · View at Google Scholar · View at Scopus