Table of Contents Author Guidelines Submit a Manuscript
Mathematical Problems in Engineering
Volume 2012, Article ID 582126, 11 pages
http://dx.doi.org/10.1155/2012/582126
Research Article

The Johnson Noise in Biological Matter

1Department of Mathematics, Istituto “G. Castelnuovo”, University of Rome “La Sapienza”, Piazzale Aldo Moro, 5, 00185 Rome, Italy
2Technical Institute “R. Rossellini”, Via della Vasca Navale, 58 CP., 00146 Rome, Italy
3Naval Technical Institute “M. Colonna”, Via Salvatore Pincherle, 201 CP., 00146 Rome, Italy

Received 28 September 2012; Accepted 6 October 2012

Academic Editor: Carlo Cattani

Copyright © 2012 Massimo Scalia et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Can a very low intensity signal overcome a disturbance, the power density of which is much higher than the signal one, and yield some observable effects? The Johnson noise seems to be a disturbance so high as to cause a negative answer to that question, when one studies the effects on the cell level due to the external ELF fields generated by electric power lines (Adair, 1990, 1991). About this subject, we show that the masking effect due to the Johnson noise, known as “Adair’s constraint” and still present in the scientific debate, can be significantly weakened. The values provided by the Johnson noise formula, that is an approximate expression, can be affected by a significant deviation with respect to the correct ones, depending on the frequency and the kind of the cells, human or not human, that one is dealing with. We will give some examples. Eventually, we remark that the so-called Zhadin effect, although born and studied in a different context, could be viewed as an experimental test that gives an affirmative answer to the initial question, when the signal is an extremely weak electromagnetic field and the disturbance is a Johnson noise.