Abstract

When using interior methods for solving semidefinite programming (SDP), one needs to solve a system of linear equations at each iteration. For problems of large size, solving the system of linear equations can be very expensive. In this paper, based on a semismooth equation reformulation using Fischer's function, we propose a filter method with trust region for solving large-scale SDP problems. At each iteration we perform a number of conjugate gradient iterations, but do not need to solve a system of linear equations. Under mild assumptions, the convergence of this algorithm is established. Numerical examples are given to illustrate the convergence results obtained.

1. Introduction

Semidefinite programming (SDP) is convex programming over positive semidefinite matrices. For early application, SDP has been widely used in control theory and combinatorial optimization (see, e.g., [1โ€“3]). Since some algorithms for linear optimization can be extended to many general SDP problems, that aroused much interest in SDP. In the past decade, many algorithms have been proposed for solving SDP, including interior-point methods (IPMs) [4โ€“7], augmented methods [8โ€“10], new Newton-type methods [11], modified barrier methods [12], and regularization approaches [13].

For small and medium sized SDP problems, IPMs are generally efficient. But for large-scale SDP problems, IPMs become very slow. In order to improve this shortcoming, [9, 14] proposed inexact IPMs using an iterative solver to compute a search direction at each iteration. More recently, [13] applied regularization approaches to solve SDP problems. All of these methods are first-order based on a gradient, or inexact second-order based on an approximation of Hessian matrix methods [15].

In this paper, we will extend filter-trust-region methods for solving linear (or nonlinear) programming [16] to large-scale SDP problems and use Lipschitz continuity. Furthermore, the accuracy of this method is controlled by a forcing parameter. It is shown that, under mild assumptions, this algorithm is convergent.

The paper is organized as follows. Some preliminaries are introduced in Section 2. In Section 3, we propose a filter-trust-region method for solving SDP problems, and we study the convergence of this method in Section 4. In Section 5, some numerical examples are presented to demonstrate the convergence results obtained in this paper. Finally, we give some conclusions in Section 6.

In this paper, we use the following common notation for SDP problems: ๐’ณ๐‘› and โ„›๐‘š denote the space of ๐‘›ร—๐‘› real symmetric matrices and the space of vectors with ๐‘š dimensions, respectively; ๐‘‹โ‰ฝ0(๐‘‹โ‰ป0) denotes that ๐‘‹โˆˆ๐’ณ๐‘› is positive semidefinite (positive definite), and ๐‘‹โชฏ0(๐‘‹โ‰บ0) is used to indicate that ๐‘‹โˆˆ๐’ณ๐‘› is negative semidefinite (negative definite). A superscript ๐‘‡ represents transposes of matrices or vectors. For ๐‘‹,๐‘Œโˆˆ๐’ณ๐‘›, the standard scalar product on the space of ๐’ณ๐‘› is defined by โŸจ๐‘‹,๐‘ŒโŸฉโˆถ=๐‘‹โ€ข๐‘Œ=trace(๐‘‹๐‘Œ)=๐‘›๎“๐‘–,๐‘—=1๐‘‹๐‘–,๐‘—๐‘Œ๐‘–,๐‘—.(1.1) If ๐‘‹โˆˆ๐’ณ๐‘› and ๐‘ฅโˆˆโ„›๐‘š, we denote that โ€–๐‘‹โ€–๐น is the Frobenius norm of ๐‘‹, that is, โ€–๐‘‹โ€–๐น=โˆš๎”โŸจ๐‘‹,๐‘‹โŸฉ=โˆ‘๐‘›๐‘–,๐‘—=1๐‘‹2๐‘–,๐‘— and โ€–๐‘ฅโ€–2 is the 2-norm of ๐‘ฅ, that is, โ€–๐‘ฅโ€–2=โˆš๐‘ฅ๐‘‡๎”๐‘ฅ=โˆ‘๐‘š๐‘–=1๐‘ฅ2๐‘–, respectively. Let ๐‘‹ be a ๐‘ร—๐‘ž matrix. Then we denote by Vec(๐‘‹) a ๐‘๐‘ž vector made of columns of ๐‘‹ stacked one by one, and the operator Mat(โ‹…) is the inverse of Vec(โ‹…), that is, Mat(Vec(๐‘‹))=๐‘‹. We also denote that ๐ผ is identity matrix.

2. Preliminaries

We consider a SDP problem of the form min๐ถโ€ข๐‘‹subjectto๐’œ(๐‘‹)=๐‘,๐‘‹โชฐ0,(2.1) where ๐ถโˆˆ๐’ณ๐‘›, ๐ด(๐‘–)โˆˆ๐’ณ๐‘›, ๐‘–=1,2,โ€ฆ,๐‘š, and ๐‘=(๐‘1,๐‘2,โ€ฆ,๐‘๐‘š)๐‘‡โˆˆโ„›๐‘š are given dates; ๐’œ is a linear map from ๐’ณ๐‘› to โ„›๐‘š given by โŽกโŽขโŽขโŽขโŽขโŽขโŽขโŽฃ๐ด๐’œ(๐‘‹)โˆถ=(1)๐ดโ€ข๐‘‹(2)โ‹ฎ๐ดโ€ข๐‘‹(๐‘š)โŽคโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฆโ€ข๐‘‹,๐‘‹โˆˆ๐’ณ๐‘›.(2.2) The dual to the problem (2.1) is given by max๐‘๐‘‡๐‘ฆsubjectto๐’œโˆ—(๐‘ฆ)+๐‘†=๐ถ,๐‘†โชฐ0,(2.3) where ๐’œโˆ— is an adjoint operator of ๐’œโˆถโ„›๐‘šโ†’๐’ณ๐‘› given by ๐’œโˆ—(๐‘ฆ)=๐‘š๎“๐‘–=1๐‘ฆ๐‘–๐ด(๐‘–),๐‘ฆโˆˆโ„›๐‘š.(2.4) Obviously, ๐‘‹โˆˆ๐’ณ๐‘› and (๐‘ฆ,๐‘†)โˆˆโ„›๐‘šร—๐’ณ๐‘› are the primal and dual variables, respectively.

It is easily verified that the SDP problem (2.1) is convex. When (2.1) and (2.3) have strictly feasible points, then strong duality holds, see [5, 12]. In this case, a point (๐‘‹,๐‘ฆ,๐‘†) is optimal for SDP problems (2.1) and (2.3) if and only if ๐’œ(๐‘‹)=๐‘,๐’œโˆ—(๐‘ฆ)+๐‘†=๐ถ,๐‘‹โชฐ0,๐‘†โชฐ0,โŸจ๐‘‹,๐‘†โŸฉ=0.(2.5) In the sense that (๐‘‹,๐‘ฆ,๐‘†) solves SDP problems (2.1) and (2.3) if and only if (๐‘‹,๐‘ฆ,๐‘†) solves (2.5) when both SDP problems (2.1) and (2.3) have strictly feasible points.

We now introduce some lemmas which will be used in the sequel.

Lemma 2.1 (see [17]). Let ๐ด,๐ตโˆˆ๐’ณ๐‘› and let ๐ดโ‰ฝ0,๐ตโ‰ฝ0. Then โŸจ๐ด,๐ตโŸฉ=0 if and only if ๐ด๐ต=0.

For ๐‘‹,๐‘†โˆˆ๐’ณ๐‘›, we define a mapping ๐œ™โˆถ๐’ณ๐‘›ร—๐’ณ๐‘›โ†’๐’ณ๐‘› given by โˆš๐œ™(๐‘‹,๐‘†)โˆถ=๐‘‹+๐‘†โˆ’๐‘‹2+๐‘†2,(2.6) which is attributed by Fischer to Burmeister (see [18, 19]). This function is nondifferentiable and has a basic property.

Lemma 2.2 (see [20, Lemma 6.1]). Let ๐œ™ be the Fischer-Burmeister function defined in (2.6). Then ๐œ™(๐‘‹,๐‘†)=0โŸบ๐‘‹โชฐ0,๐‘†โชฐ0,๐‘‹๐‘†=0.(2.7)

In addition, for ๐œ>0 and ๐‘‹,๐‘†โˆˆ๐’ณ๐‘›, we define a mapping ๐œ™๐œโˆถ๐’ณ๐‘›ร—๐’ณ๐‘›โ†’๐’ณ๐‘› by ๐œ™๐œโˆš(๐‘‹,๐‘†)โˆถ=๐‘‹+๐‘†โˆ’๐‘‹2+๐‘†2+2๐œ2๐ผ,(2.8) which is differentiable and has following results.

Lemma 2.3 (see [11, Propositionโ€‰โ€‰2.3]). Let ๐œ>0 be any positive number and let ๐œ™๐œ be defined by (2.8). Then ๐œ™๐œ(๐‘‹,๐‘†)=0โŸบ๐‘‹โ‰ป0,๐‘†โ‰ป0,๐‘‹๐‘†=๐œ2๐ผ.(2.9)

Lemma 2.4. Let ๐œ>0 be any positive number, and let ๐œ™๐œ be defined by (2.8). If ๐œโ†’0, we would have ๐œ™๐œ(๐‘‹,๐‘†)=0โŸบ๐‘‹โชฐ0,๐‘†โชฐ0,๐‘‹๐‘†=0.(2.10)

Proof. The proof can be obtained from Lemmas 2.2 and 2.3.

Lemma 2.5 (see [20, pages 170โ€“171]). For any ๐ถโ‰ป0, define the linear operator ๐ฟ๐ถ by ๐ฟ๐ถ[๐‘‹]โˆถ=๐ถ๐‘‹+๐‘‹๐ถ,๐‘‹โˆˆ๐’ณ๐‘›.(2.11) Then ๐ฟ๐ถ is strictly monotone and so has an inverse ๐ฟ๐ถโˆ’1.

Lemma 2.6 (see [21, Lemmaโ€‰โ€‰2]). Let ๐‘‹,๐‘†,๐‘ˆ,๐‘‰โˆˆ๐’ณ๐‘›, and let ๐œ™๐œ be defined by (2.8). For any ๐œ>0, we have that ๐œ™๐œ is Frรฉchet-differentiable and โˆ‡๐œ™๐œ(๐‘‹,๐‘†)(๐‘ˆ,๐‘‰)=๐‘ˆ+๐‘‰โˆ’๐ฟ๐ถโˆ’1[],๐‘‹๐‘ˆ+๐‘ˆ๐‘‹+๐‘†๐‘‰+๐‘‰๐‘†(2.12) where โˆš๐ถโˆถ=๐‘‹2+๐‘†2+2๐œ2๐ผ.

Lemma 2.7 (see [22, Corollary 2.7]). Let ๐น be a map from ๐’ณ๐‘› to ๐’ณ๐‘›. If ๐น is locally Lipschitzian on ๐’ณ๐‘›, then ๐น is almost everywhere Frรฉchet-differentiable on ๐’ณ๐‘›.

3. The Algorithm

In this section, we will present a filter-trust-region method for solving SDP problems (2.1) and (2.3). Firstly, for a parameter ๐œ>0, we construct a function: ๐ป๐œโŽ›โŽœโŽœโŽœโŽœโŽœโŽœโŽ๐œ๐’œ(๐‘‹,๐‘ฆ,๐‘†)โˆถ=๐’œ(๐‘‹)โˆ’๐‘โˆ—โˆš(๐‘ฆ)+๐‘†โˆ’๐ถ๐‘‹+๐‘†โˆ’๐‘‹2+๐‘†2+2๐œ2๐ผโŽžโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽ ,(3.1) where (๐‘‹,๐‘ฆ,๐‘†)โˆˆ๐’ณ๐‘›ร—โ„›๐‘šร—๐’ณ๐‘›.

According to Lemmas 2.1, 2.3 and 2.4, the following theorem is obvious.

Theorem 3.1. Let ๐œ>0 and let ๐ป๐œ(๐‘‹,๐‘ฆ,๐‘†) be defined by (3.1). If SDP problems (2.1) and (2.3) have strictly feasible points, then ๐ป๐œ๎€ท๐‘‹โˆ—,๐‘ฆโˆ—,๐‘†โˆ—๎€ธ๎€ท๐‘‹=0โŸนโˆ—,๐‘ฆโˆ—,๐‘†โˆ—๎€ธsolves(2.5).(3.2)

In what follows, we will study properties of the function ๐ป๐œ(๐‘‹,๐‘ฆ,๐‘†). For simplicity, in the remaining sections of this paper, we denote ๐‘โˆถ=(๐‘‹,๐‘ฆ,๐‘†), ๐‘๐‘˜โˆถ=(๐‘‹๐‘˜,๐‘ฆ๐‘˜,๐‘†๐‘˜) and ฮ”๐‘โˆถ=(ฮ”๐‘‹,ฮ”๐‘ฆ,ฮ”๐‘†).

Theorem 3.2. Let ๐ป๐œ(๐‘) be defined by (3.1). For any ๐‘,ฮ”๐‘โˆˆ๐’ณ๐‘›ร—โ„›๐‘šร—๐’ณ๐‘› and ๐œ>0, then ๐ป๐œ(๐‘) is Frรฉchet-differentiable and โˆ‡๐ป๐œโŽ›โŽœโŽœโŽœโŽœโŽœโŽœโŽ๐’œ(๐‘)(ฮ”๐‘)=ฮ”๐œ๐’œ(ฮ”๐‘‹)โˆ’๐‘โˆ—(ฮ”๐‘ฆ)+ฮ”๐‘†โˆ’๐ถฮ”๐‘‹+ฮ”๐‘†โˆ’๐ฟ๐ถโˆ’1[]โŽžโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽ ๐‘‹ฮ”๐‘‹+ฮ”๐‘‹๐‘‹+๐‘†ฮ”๐‘†+ฮ”๐‘†๐‘†,(3.3) where ฮ”๐œ>0 and โˆš๐ถโˆถ=๐‘‹2+๐‘†2+2๐œ2๐ผ.

Proof. For any ๐‘โˆˆ๐’ณ๐‘›ร—โ„›๐‘šร—๐’ณ๐‘›, since ๐’œ(๐‘‹)โˆ’๐‘ and ๐’œโˆ—(๐‘ฆ)+๐‘†โˆ’๐ถ are linear functions and continuous differentiable, it follows that they are also locally Lipschitz continuous. Then, from Lemma 2.7, ๐’œ(๐‘‹)โˆ’๐‘ and ๐’œโˆ—(๐‘ฆ)+๐‘†โˆ’๐ถ are Frรฉchet-differentiable. Furthermore, โˆš๐‘‹+๐‘†โˆ’๐‘‹2+๐‘†2+2๐œ2๐ผ is Frรฉchet-differentiable from Lemma 2.6. Thus, ๐ป๐œ(๐‘) is Frรฉchet-differentiable and has the form of (3.3). We complete the proof.

We endow the variable ๐‘ with the following norm: โ€–๎€ทโ€–๐‘โ€–=โ€–(๐‘‹,๐‘ฆ,๐‘†)โ€–โˆถ=๐‘‹โ€–2๐น+โ€–๐‘ฆโ€–22+โ€–๐‘†โ€–2๐น๎€ธ1/2.(3.4) In addition, we set ๎€ทโ„Žโ„Ž(๐‘)=1(๐‘),โ„Ž2(๐‘),โ„Ž3(๐‘),โ„Ž4๎€ธ(๐‘)๐‘‡,(3.5) where โ„Ž1(๐‘)=โ€–๐’œ(๐‘‹)โˆ’๐‘โ€–2,โ„Ž2โ€–โ€–๐’œ(๐‘)=โˆ—โ€–โ€–(๐‘ฆ)+๐‘†โˆ’๐ถ๐น,โ„Ž3โ€–โ€–โ€–โˆš(๐‘)=๐‘‹+๐‘†โˆ’๐‘‹2+๐‘†2+2๐œ2๐ผโ€–โ€–โ€–๐นโ„Ž4(๐‘)=|๐œ|.(3.6) We also define the function ๐ป๐œ(๐‘) and the vector โ„Ž(๐‘) with the following norm: โ€–โ€–๐ป๐œโ€–โ€–๎ƒฉ(๐‘)=โ€–โ„Ž(๐‘)โ€–=4๎“๐‘–=1โ„Ž๐‘–(๐‘)2๎ƒช1/2=๎‚ตโ€–โ€–๐’œ(๐‘‹)โˆ’๐‘22+โ€–โ€–๐’œโˆ—โ€–โ€–(๐‘ฆ)+๐‘†โˆ’๐ถ2๐น+โ€–โ€–โ€–โˆš๐‘‹+๐‘†โˆ’๐‘‹2+๐‘†2+2๐œ2๐ผโ€–โ€–โ€–2๐น+๐œ2๎‚ถ1/2.(3.7)

Now, for any ๐œ>0, we define the merit function ฮจโˆถ๐’ณ๐‘›ร—โ„›๐‘šร—๐’ณ๐‘›โ†’โ„› by ฮจ๐œ1(๐‘)โˆถ=2โ€–โ€–๐ป๐œโ€–โ€–(๐‘)2.(3.8)

Lemma 3.3. For any ๐œ>0 and ๐‘โˆˆ๐’ณ๐‘›ร—โ„›๐‘šร—๐’ณ๐‘›, if ๐‘‹ and ๐‘† are nonsingular, then ฮจ๐œ(๐‘) is locally Lipschitz continuous and twice Frรฉchet-differentiable at every ๐‘โˆˆ๐’ณ๐‘›ร—โ„›๐‘šร—๐’ณ๐‘›.

Proof. For any ๐œ>0, since ฮจ๐œ(๐‘) is convex and continuously differentiable, it follows that ฮจ๐œ(๐‘) is also locally Lipschitz continuous.
In addition, for any ๐‘โˆˆ๐’ณ๐‘›ร—โ„›๐‘šร—๐’ณ๐‘›, from [20, pages 173โ€“175], โ„Ž3(๐‘)2 is twice Frรฉchet-differentiable. Furthermore, โ„Ž1(๐‘)2, โ„Ž2(๐‘)2, and โ„Ž4(๐‘)2 are continuous at every ๐‘โˆˆ๐’ณ๐‘›ร—โ„›๐‘šร—๐’ณ๐‘› when ๐œ>0, which, together with Lemma 2.7, ฮจ๐œ(๐‘) is twice Frรฉchet-differentiable. The proof is completed.

Lemma 3.4. Let ๐ป๐œ(๐‘) and ฮจ๐œ(๐‘) be defined by (3.1) and (3.8), respectively. For any ๐œ>0, we have ฮจ๐œ(๐‘)=0โŸบ๐ป๐œ(๐‘)=0.(3.9)

Proof. The proof can be immediately obtained from the definition of ๐ป๐œ(๐‘) and ฮจ๐œ(๐‘).

We follow the classical method for solving ฮจ๐œ(๐‘)=0, which consists some norm of the residual. For any ๐œ>0, we consider minฮจ๐œ(๐‘),(3.10) where ๐‘โˆˆ๐’ณ๐‘›ร—โ„›๐‘šร—๐’ณ๐‘›. Thus, for any ๐œ>0, we want to find a minimizer ๐‘โˆ— of ฮจ๐œ(๐‘). Furthermore, if ฮจ๐œ(๐‘โˆ—)=0, then ๐‘โˆ— is also a solution of ๐ป๐œ(๐‘).

In order to state our method for solving (3.10), we consider using a filter mechanism to accept a new point. Just as [16, pages 19โ€“20], the notation of filter is based on that of dominance.

Definition 3.5. For any ๐œ>0 and any ๐‘1,๐‘2โˆˆ๐’ณ๐‘›ร—โ„›๐‘šร—๐’ณ๐‘›, a point ๐‘1 dominates a point ๐‘2 if and only if โ„Ž๐‘–๎€ท๐‘1๎€ธโ‰คโ„Ž๐‘–๎€ท๐‘2๎€ธโˆ€๐‘–=1,2,3,4.(3.11)

Thus, if iterate ๐‘1 dominates iterate ๐‘2, the latter is of no real interest to us since ๐‘1 is at least as good as ๐‘2 for each of the components of โ„Ž(๐‘). All we need to do is remember iterates that are no dominated by other iterates by using a structure called a filter.

Definition 3.6. Let ๐น(๐‘˜) be a set of 4-tuples of the following form: ๎€ทโ„Ž1๎€ท๐‘๐‘˜๎€ธ,โ„Ž2๎€ท๐‘๐‘˜๎€ธ,โ„Ž3๎€ท๐‘๐‘˜๎€ธ,โ„Ž4๎€ท๐‘๐‘˜๎€ธ๎€ธ.(3.12) We define ๐น(๐‘˜) as a filter if โ„Ž(๐‘๐‘˜) and โ„Ž(๐‘๐‘™) belong to ๐น(๐‘˜), when ๐‘˜โ‰ ๐‘™, then โ„Ž๐‘–๎€ท๐‘๐‘˜๎€ธ<โ„Ž๐‘–๎€ท๐‘๐‘™๎€ธforatleastone๐‘–โˆˆ{1,2,3,4}.(3.13)

Definition 3.7. A new point ๐‘+๐‘˜ is acceptable for the filter ๐น(๐‘˜) if and only if ๎€ท๐‘โˆ€โ„Ž๐‘˜๎€ธโˆˆ๐น(๐‘˜)โˆƒ๐‘–โˆˆ{1,2,3,4}โˆถโ„Ž๐‘–๎€ท๐‘+๐‘˜๎€ธโ‰คโ„Ž๐‘–๎€ท๐‘๐‘˜๎€ธโ€–โ€–โ„Ž๎€ท๐‘โˆ’๐›ผ๐‘˜๎€ธโ€–โ€–,(3.14) where โˆš๐›ผโˆˆ(0,1/4) is a small constant.

Now, we formally present our trust region algorithm by using filter techniques.

Algorithm 3.8. The Filter-Trust-Region Algorithm
Step 0. Choose an initial point ๐‘0=(๐‘‹0,๐‘ฆ0,๐‘†0)โˆˆ๐’ณ๐‘›ร—โ„›๐‘šร—๐’ณ๐‘›, ๐œ€>0, โˆš0<๐›ผ<1/4 and ๐œ0=โŸจ๐‘‹0,๐‘†0โŸฉ/2๐‘›. The constants ๐œ‚1, ๐œ‚2, ๐œ‚3, ๐œ‡, ๐›พ, ๐›พ1, and ๐›พ2 are also given and satisfy 0<๐œ‚1โ‰ค๐œ‚2โ‰ค๐œ‚3<1,0<๐œ‡<1,0<๐›พ<๐›พ1<1โ‰ค๐›พ2.(3.15)
Compute ฮจ๐œ0(๐‘0), set ฮ”0=0.5โ€–โˆ‡ฮจ๐œ0(๐‘0)โ€–, ๐‘˜=0 and only (๐œ‡,โˆ’โˆž,๐œ‡,๐œ‡) in the filter ๐น(0).
Step 1. If โˆ‡ฮจ๐œ๐‘˜(๐‘๐‘˜)<๐œ€, stop.
Step 2. Compute ฮ”๐‘๐‘˜ by solving the following problem: min๐œ‘๐‘˜(ฮ”๐‘)s.t.โ€–ฮ”๐‘โ€–โ‰คฮ”๐‘˜,(3.16) where ๐œ‘๐‘˜1(ฮ”๐‘)=2โ€–โ€–๐ป๐œ๐‘˜๎€ท๐‘๐‘˜๎€ธ+โˆ‡๐ป๐œ๐‘˜๎€ท๐‘๐‘˜๎€ธโ€–โ€–(ฮ”๐‘)2=ฮจ๐œ๐‘˜๎€ท๐‘๐‘˜๎€ธ+๐ป๐œ๐‘˜๎€ท๐‘๐‘˜๎€ธ๐‘‡โˆ‡๐ป๐œ๐‘˜๎€ท๐‘๐‘˜๎€ธ(+1ฮ”๐‘)2(ฮ”๐‘)๐‘‡โˆ‡๐ป๐œ๐‘˜๎€ท๐‘๐‘˜๎€ธ๐‘‡โˆ‡๐ป๐œ๐‘˜๎€ท๐‘๐‘˜๎€ธ(ฮ”๐‘).(3.17)
If โ€–ฮ”๐‘๐‘˜โ€–<๐œ€, stop.
Otherwise, computer the trial point ๐‘+๐‘˜=๐‘๐‘˜+ฮ”๐‘๐‘˜.
Step 3. Compute ฮจ๐œ๐‘˜(๐‘+๐‘˜) and define the following ratio: ๐‘Ÿ๐‘˜=ฮจ๐œ๐‘˜๎€ท๐‘๐‘˜๎€ธโˆ’ฮจ๐œ๐‘˜๎€ท๐‘+๐‘˜๎€ธ๐œ‘๐‘˜(0)โˆ’๐œ‘๐‘˜๎€ทฮ”๐‘๐‘˜๎€ธ.(3.18)
Step 4. If ๐‘Ÿ๐‘˜โ‰ฅ๐œ‚1, set ๐‘๐‘˜+1=๐‘+๐‘˜.
If ๐‘Ÿ๐‘˜<๐œ‚1 but ๐‘+๐‘˜ satisfies (3.14), then add โ„Ž(๐‘+๐‘˜) to the filter ๐น(๐‘˜) and remove all points from ๐น(๐‘˜) dominated by โ„Ž(๐‘+๐‘˜). At the same time, set ๐‘๐‘˜+1=๐‘+๐‘˜.
Else, set ๐‘๐‘˜+1=๐‘๐‘˜.
Step 5. Update ๐œ๐‘˜ by choosing ๐œ๐‘˜+1โˆˆ๎‚ป๐›พ๐œ๐‘˜if๐‘๐‘˜+1=๐‘+๐‘˜,๐œ๐‘˜else;(3.19) and update trust-region radius ฮ”๐‘˜ by choosing ฮ”๐‘˜+1โŽงโŽชโŽจโŽชโŽฉโˆถ=๐›พฮ”๐‘˜,if๐‘Ÿ๐‘˜<๐œ‚1,๐›พ1ฮ”๐‘˜,if๐‘Ÿ๐‘˜โˆˆ๎€บ๐œ‚1,๐œ‚2๎€ป,ฮ”๐‘˜,if๐‘Ÿ๐‘˜โˆˆ๎€ท๐œ‚2,๐œ‚3๎€ธ,๐›พ2ฮ”๐‘˜,if๐‘Ÿ๐‘˜โ‰ฅ๐œ‚3.(3.20)
Step 6. Set ๐‘˜โˆถ=๐‘˜+1 and go to Step 1.

Remark 3.9. Algorithm 3.8 can be started any ๐œ>0. In fact, in order to increase the convergent speed greatly, we always choose ๐œ0=โŸจ๐‘‹0,๐‘†0โŸฉ/2๐‘›. In addition, in this algorithm, we fix ๐œ at first, then search ๐‘ for ฮจ๐œ(๐‘)=0 to update ๐‘. At last we update ๐œ and repeat.

The following lemma is a generalized case of Proposition 3.1 in [23].

Lemma 3.10. Algorithm 3.8 is well defined, that is, the inner iteration (Step 2) terminates finitely.

For the purpose of our analysis, in the sequence of points generated by Algorithm 3.8, we denote ๐’œ={๐‘˜โˆฃ๐‘Ÿ๐‘˜โ‰ฅ๐œ‚1},โ„ฌ={๐‘˜|โ„Ž(๐‘+๐‘˜)isaddedtothe๏ฌlter๐น(๐‘˜)}, and ๐’ž={๐‘˜|๐‘๐‘˜+1=๐‘๐‘˜+ฮ”๐‘๐‘˜}. It is clear that, โ‹ƒโ„ฌ๐’ž=๐’œ.

Remark 3.11. Lemma 3.3 implies that there exists a constant 0<๐‘€โ‰ค1 such that โ„Ž๐‘–๎€ท๐‘๐‘˜๎€ธโ€–โ€–โˆ‡โ‰ค๐‘€,2โ„Ž๐‘–๎€ท๐‘๐‘˜๎€ธโ€–โ€–โ€–โ€–โˆ‡โ‰ค๐‘€,2๐œ‘๐‘˜โ€–โ€–(ฮ”๐‘)โ‰ค๐‘€(3.21) for all ๐‘˜โˆˆ๐’ž and ๐‘–โˆˆ{1,2,3,4}. The second of above inequalities ensures that the constant 0<๐‘€โ‰ค1 can also be chosen such that โ€–โ€–โˆ‡2ฮจ๐œ๐‘˜๎€ท๐‘๐‘˜๎€ธโ€–โ€–โ‰ค๐‘€.(3.22)

4. Convergence of Analysis

In this section, we present a proof of global convergence of Algorithm 3.8. First, we make the following assumptions.

Some lemmas will be presented to be used in the subsequent analysis.โ€‰(S1)๐œ‘๐‘˜(0)โˆ’๐œ‘๐‘˜(ฮ”๐‘๐‘˜)โ‰ฅ1/2โ€–โˆ‡ฮจ๐œ๐‘˜(๐‘๐‘˜)โ€–min{ฮ”๐‘˜,โ€–โˆ‡ฮจ๐œ๐‘˜(๐‘๐‘˜)โ€–/โ€–โˆ‡๐ป๐œ๐‘˜(๐‘๐‘˜)๐‘‡โˆ‡๐ป๐œ๐‘˜(๐‘๐‘˜)โ€–}, where ฮ”๐‘๐‘˜ is a solution of (3.16). (S2)โ€‰ The iterations generated by Algorithm 3.8 remain in a close, bounded domain.

Lemma 4.1 (see [24]). Let assumptions (S1) and (S2) hold. If there exists ๐‘™0>0 such that โ€–โˆ‡ฮจ๐œ๐‘˜(๐‘๐‘˜)โ€–โ‰ฅ๐‘™0>0 for all ๐‘˜; then there exists ๐‘™1>0 such that ฮ”๐‘˜โ‰ฅ๐‘™1.

Lemma 4.2. Let {๐œ๐‘˜} be the infinite sequence generated by the Algorithm 3.8. Then lim๐‘˜โ†’โˆž๐œ๐‘˜=0.(4.1)

Proof. Since |๐’ž|=|๐’œ|=+โˆž, from Steps 4 and 5 of Algorithm 3.8, ๐œ๐‘˜+1=๐›พ๐œ๐‘˜ and 0<๐›พ<๐œ0<1. Therefore, ๐œ๐‘˜+1=๐›พ๐‘˜๐œ0. Moreover, lim๐‘˜โ†’โˆž๐œ๐‘˜=lim๐‘˜โ†’โˆž๐›พ๐‘˜๐œ0=0(4.2) for 0<๐›พ<๐œ0<1, which completes the proof.

Theorem 4.3. Let |๐’ž|<+โˆž, assumptions (S1) and (S2) hold. Then there exists ๐‘˜โˆˆ๐’ž such that โˆ‡ฮจ๐œ๐‘˜๎€ท๐‘๐‘˜๎€ธ=0.(4.3)

Proof. Suppose that โˆ‡ฮจ๐œ๐‘˜(๐‘๐‘˜)โ‰ 0 for all ๐‘˜โˆˆ๐’ž. Then there exists ๐œ”0>0 such that โ€–โ€–โˆ‡ฮจ๐œ๐‘˜๎€ท๐‘๐‘˜๎€ธโ€–โ€–โ‰ฅ๐œ”0>0.(4.4) From Lemma 4.1, there exists ๐œ”1>0 such that ฮ”๐‘˜โ‰ฅ๐œ”1>0.(4.5)
On the other hand, |๐’ž|<+โˆž, let ๐‘ be the last successful iteration, then ๐‘๐‘+1=๐‘๐‘+2=โ‹ฏ=๐‘๐‘+๐‘—(๐‘—โ‰ฅ1) are unsuccessful iterations. From Steps 4 and 5 of Algorithm 3.8, ๐‘Ÿ๐‘+๐‘—<๐œ‚1, for sufficiently large ๐‘, we have lim๐‘โ†’โˆžฮ”๐‘+๐‘—=0,(4.6) which contradicts (4.5). The proof is completed.

We now consider what happens if the set ๐’œ is infinite in the course of Algorithm 3.8.

Theorem 4.4. Suppose that |๐’ž|=|๐’œ|=+โˆž, assumptions (S1) and (S2) hold. For any ๐œ>0 and ๐‘โˆˆ๐’ณ๐‘›ร—โ„›๐‘šร—๐’ณ๐‘›, if ๐‘‹ and ๐‘† are nonsingular, then each accumulation point of the infinite sequences generated by Algorithm 3.8 is a stationary point of ฮจ๐œ(๐‘).

Proof. The proof is by contradiction. Suppose that {๐‘๐‘˜} is an infinite sequence generated by Algorithm 3.8, and any accumulation point of {๐‘๐‘˜} is not a stationary point of ฮจ๐œ(๐‘). Suppose furthermore that ๐‘โˆ— and ๐œโˆ— are the accumulation points of {๐‘๐‘˜} and {๐œ๐‘˜}, respectively. Since ๐‘โˆ— is not a stationary point of ฮจ๐œ(๐‘), then โˆ‡ฮจ๐œโˆ—๎€ท๐‘โˆ—๎€ธโ‰ 0(4.7) and there exists ๐œ–0>0 such that โ€–โ€–โˆ‡ฮจ๐œโˆ—๎€ท๐‘โˆ—๎€ธโ€–โ€–>๐œ–0>0.(4.8) For some ๐œ–โˆ—>0, let ๐’ฉ(๐‘โˆ—,๐œ–โˆ—) be a neighborhood of ๐‘โˆ—. From (4.8), there exists {๐‘๐‘˜}๐‘˜โˆˆ๐พโˆˆ๐’ฉ(๐‘โˆ—,๐œ–โˆ—) such that โ€–โ€–โˆ‡ฮจ๐œ๐‘˜๎€ท๐‘๐‘˜๎€ธโ€–โ€–โ‰ฅ๐œ–0>0,(4.9) where ๐พโŠ†๐’œ.
For ๐‘š,๐‘š+๐œˆโˆˆ๐พ, because ฮจ๐œ๐‘˜๎€ท๐‘๐‘˜๎€ธโˆ’ฮจ๐œ๐‘˜+1๎€ท๐‘๐‘˜+1๎€ธโ‰ฅ๐œ‚1๎€บ๐œ‘๐‘˜(0)โˆ’๐œ‘๐‘˜๎€ทฮ”๐‘๐‘˜,๎€ธ๎€ป(4.10) we obtain that ฮจ๐œ๐‘š๎€ท๐‘๐‘š๎€ธโˆ’ฮจ๐œ๐‘š+๐œˆ๎€ท๐‘๐‘š+๐œˆ๎€ธ=๐‘š+๐œˆ๎“๐‘–=๐‘šโˆˆ๐พ๎‚ƒฮจ๐œ๐‘–๎€ท๐‘๐‘–๎€ธโˆ’ฮจ๐œ๐‘–+1๎€ท๐‘๐‘–+1๎€ธ๎‚„โ‰ฅ๐œ‚1๐‘š+๐œˆ๎“๐‘–=๐‘šโˆˆ๐พ๎€บ๐œ‘๐‘˜(0)โˆ’๐œ‘๐‘˜๎€ทฮ”๐‘๐‘˜๎€ธ๎€ปโ‰ฅ๐œ‚1๐‘š+๐œˆ๎“๐‘–=๐‘šโˆˆ๐พ12โ€–โ€–โˆ‡ฮจ๐œ๐‘˜๎€ท๐‘๐‘˜๎€ธโ€–โ€–โŽงโŽชโŽจโŽชโŽฉฮ”min๐‘˜,โ€–โ€–โˆ‡ฮจ๐œ๐‘˜๎€ท๐‘๐‘˜๎€ธโ€–โ€–โ€–โ€–โˆ‡๐ป๐œ๐‘˜๎€ท๐‘๐‘˜๎€ธ๐‘‡โˆ‡๐ป๐œ๐‘˜๎€ท๐‘๐‘˜๎€ธโ€–โ€–โŽซโŽชโŽฌโŽชโŽญโ‰ฅ๐œ‚1๐‘š+๐œˆ๎“๐‘–=๐‘šโˆˆ๐พ12๐œ–0โŽงโŽชโŽจโŽชโŽฉฮ”min๐‘˜,๐œ–0โ€–โ€–โˆ‡๐ป๐œ๐‘˜๎€ท๐‘๐‘˜๎€ธ๐‘‡โˆ‡๐ป๐œ๐‘˜๎€ท๐‘๐‘˜๎€ธโ€–โ€–โŽซโŽชโŽฌโŽชโŽญ.(4.11)
From (4.10), we know that ฮจ๐œ๐‘˜(๐‘๐‘˜) is monotone decreasing and bounded below, which implies that ฮจ๐œ๐‘š(๐‘๐‘š)โˆ’ฮจ๐œ๐‘š+๐‘›(๐‘๐‘š+๐œˆ)โ†’0 for ๐‘šโ†’โˆž,๐‘šโˆˆ๐พ. Thus, ๐œ‚1๐‘š+๐œˆ๎“๐‘–=๐‘šโˆˆ๐พ12๐œ–0โŽงโŽชโŽจโŽชโŽฉฮ”min๐‘˜,๐œ–0โ€–โ€–โˆ‡๐ป๐œ๐‘˜๎€ท๐‘๐‘˜๎€ธ๐‘‡โˆ‡๐ป๐œ๐‘˜๎€ท๐‘๐‘˜๎€ธโ€–โ€–โŽซโŽชโŽฌโŽชโŽญโŸถ0.(4.12) As a result, we have lim๐‘˜โ†’โˆž,๐‘˜โˆˆ๐พฮ”๐‘˜=0.(4.13) By the update rule of ฮ”๐‘˜, there exists an infinite subsequence ๐พโ‹†โŠ†๐พ, and we have that ๐‘Ÿ๐‘–โ‰ค๐œ‚1,lim๐‘–โ†’โˆžฮ”๐‘–=0,๐‘–โˆˆ๐พโ‹†.(4.14) which contradicts ๐‘˜โˆˆ๐พโŠ†๐’œ. This completes the proof.

In what follows, we investigate the case where the number of iterations added to the filter ๐น(๐‘˜) in the course of Algorithm 3.8 is infinite.

Theorem 4.5. Suppose that |๐’ž|=|โ„ฌ|=+โˆž but |๐ด|<+โˆž, SDP problems (2.1) and (2.3) have strictly feasible points. Suppose furthermore that assumptions (S1) and (S2) hold. For any ๐œ>0 and ๐‘โˆˆ๐’ณ๐‘›ร—โ„›๐‘šร—๐’ณ๐‘›, if ๐‘‹ and ๐‘† are nonsingular, then lim๐‘˜โ†’โˆžโ€–โ€–๐ป๐œ๎€ท๐‘๐‘˜๎€ธโ€–โ€–=lim๐‘˜โ†’โˆžโ€–โ€–โˆ‡ฮจ๐œ๐‘˜๎€ท๐‘๐‘˜๎€ธโ€–โ€–=0.(4.15)

Proof. First let {๐œ๐‘˜} be the sequence generated by Algorithm 3.8. From Lemma 4.2, we have lim๐‘˜โ†’โˆž๐œ๐‘˜=0,(4.16) which, together with assumption (S2), the desired result follows from [16, Lemmaโ€‰โ€‰3.1].

5. Numerical Experiments

In this section, we describe the results of some numerical experiments with the Algorithm 3.8 for the random sparse SDP considered in [13]. All programs are written in Matlab code and all computations are tested under Matlab 7.1 on Pentium 4.

In addition, in the computations, the following values are assigned to the parameters in the Algorithm: ๐œ‚1=0.1, ๐œ‚2=0.5, ๐œ‚3=0.8, ๐œ‡=0.1, ๐›พ=0.2, ๐›พ1=0.5, and ๐›พ2=2. We also use the stopping criteria is being of ๐œ€=10โˆ’8.

In the following Table 1, the first two columns give the size of the matrix ๐ถ and the dimension of the variable ๐‘ฆ. In the middle columns, โ€œ๐น-timeโ€ denotes the computing time (in seconds), โ€œ๐น-it.โ€ denotes the numbers iteration, and โ€œ๐น-obj.โ€ defines the value of ฮจ๐œ๐‘˜(๐‘๐‘˜) when our stopping criteria is satisfied. Some numerical results of [13] are shown in the last two columns.

As shown in Table 1, all test problems have been solved just few iterations compared with [13]. Furthermore, this algorithm is less sensitive to the size of SDP problems. Comparatively speaking, our method is attractive and suitable for solving large-scale SDP problems.

6. Conclusions

In this paper, we have proposed a filter-trust-region method for SDP problems. Such a method offers a trade-off between the accuracy of solving the subproblems and the amount of work for solving them. Furthermore, numerical results show that our algorithm is attractive for large-scale SDP problems.

Acknowledgments

The authors would like to thank Professor Florian Jarre for his advice and guidance, Thomas David and Li Luo for their grateful help, and also the referees for their helpful comments. This work is supported by National Natural Science Foundation of China 10971162.