Table of Contents Author Guidelines Submit a Manuscript
Mathematical Problems in Engineering
Volume 2012 (2012), Article ID 829037, 14 pages
http://dx.doi.org/10.1155/2012/829037
Research Article

Further Stability Criterion on Delayed Recurrent Neural Networks Based on Reciprocal Convex Technique

1Key Laboratory of Measurement and Control of CSE, School of Automation, Southeast University, Ministry of Education, Nanjing 210096, China
2School of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210007, China

Received 15 April 2011; Revised 3 June 2011; Accepted 6 July 2011

Academic Editor: Zidong Wang

Copyright © 2012 Guobao Zhang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. Shen, Z. Wang, H. Shu, and G. Wei, “H filtering for nonlinear discrete-time stochastic systems with randomly varying sensor delays,” Automatica, vol. 45, no. 4, pp. 1032–1037, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  2. B. Shen, Z. Wang, Y. S. Hung, and G. Chesi, “Distributed H filtering for polynomial nonlinear stochastic systems in sensor networks,” IEEE Transactions on Industrial Electronics, vol. 58, no. 5, pp. 1971–1979, 2011. View at Publisher · View at Google Scholar
  3. H. Dong, Z. Wang, D. W. C. Ho, and H. Gao, “Robust H fuzzy output-feedback control with multiple probabilistic delays and multiple missing measurements,” IEEE Transactions on Fuzzy Systems, vol. 18, no. 4, pp. 712–725, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. B. Shen, Z. Wang, and Y. S. Hung, “Distributed H-consensus filtering in sensor networks with multiple missing measurements: the finite-horizon case,” Automatica, vol. 46, no. 10, pp. 1682–1688, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. H. Dong, Z. Wang, and H. Gao, “Robust H filtering for a class of nonlinear networked systems with multiple stochastic communication delays and packet dropouts,” IEEE Transactions on Signal Processing, vol. 58, no. 4, pp. 1957–1966, 2010. View at Publisher · View at Google Scholar
  6. G. Wei, Z. Wang, and B. Shen, “Error-constrained filtering for a class of nonlinear time-varying delay systems with non-Gaussian noises,” IEEE Transactions on Automatic Control, vol. 55, no. 12, pp. 2876–2882, 2010. View at Publisher · View at Google Scholar
  7. Z. Wang, H. Zhang, and W. Yu, “Robust stability criteria for interval Cohen-Grossberg neural networks with time varying delay,” Neurocomputing, vol. 72, no. 4–6, pp. 1105–1110, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. P. Balasubramaniam and S. Lakshmanan, “Delay-range dependent stability criteria for neural networks with Markovian jumping parameters,” Nonlinear Analysis: Hybrid Systems, vol. 3, no. 4, pp. 749–756, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  9. Y. Zhang, D. Yue, and E. Tian, “New stability criteria of neural networks with interval time-varying delay: a piecewise delay method,” Applied Mathematics and Computation, vol. 208, no. 1, pp. 249–259, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  10. K. Gu, “Refined discretized Lyapunov functional method for systems with multiple delays,” International Journal of Robust and Nonlinear Control, vol. 13, no. 11, pp. 1017–1033, 2003. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  11. W. H. Chen and W. X. Zheng, “Improved delay-dependent asymptotic stability criteria for delayed neural networks,” IEEE Transactions on Neural Networks, vol. 19, no. 12, pp. 2154–2161, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. S. Mou, H. Gao, J. Lam, and W. Qiang, “A new criterion of delay-dependent asymptotic stability for Hopfield neural networks with time delay,” IEEE Transactions on Neural Networks, vol. 19, no. 3, pp. 532–535, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. R. Yang, H. Gao, and P. Shi, “Novel robust stability criteria for stochastic Hopfield neural networks with time delays,” IEEE Transactions on Systems, Man, and Cybernetics, Part B, vol. 39, no. 2, pp. 467–474, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. X. M. Zhang and Q. L. Han, “New Lyapunov-Krasovskii functionals for global asymptotic stability of delayed neural networks,” IEEE Transactions on Neural Networks, vol. 20, no. 3, pp. 533–539, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. L. Hu, H. Gao, and W. X. Zheng, “Novel stability of cellular neural networks with interval time-varying delay,” Neural Networks, vol. 21, no. 10, pp. 1458–1463, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. L. Hu, H. Gao, and P. Shi, “New stability criteria for Cohen-Grossberg neural networks with time delays,” IET Control Theory & Applications, vol. 3, no. 9, pp. 1275–1282, 2009. View at Publisher · View at Google Scholar
  17. T. Li, A. Song, S. Fei, and T. Wang, “Delay-derivative-dependent stability for delayed neural networks with unbound distributed delay,” IEEE Transactions on Neural Networks, vol. 21, no. 8, pp. 1365–1371, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. T. Li, S.-M. Fei, Y.-Q. Guo, and Q. Zhu, “Stability analysis on Cohen-Grossberg neural networks with both time-varying and continuously distributed delays,” Nonlinear Analysis. Real World Applications, vol. 10, no. 4, pp. 2600–2612, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  19. J. H. Park, “On global stability criterion of neural networks with continuously distributed delays,” Chaos, Solitons & Fractals, vol. 37, no. 2, pp. 444–449, 2008. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  20. P. Balasubramaniam and R. Rakkiyappan, “Global asymptotic stability of stochastic recurrent neural networks with multiple discrete delays and unbounded distributed delays,” Applied Mathematics and Computation, vol. 204, no. 2, pp. 680–686, 2008. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  21. Q. Song and J. Cao, “Stability analysis of Cohen-Grossberg neural network with both time-varying and continuously distributed delays,” Journal of Computational and Applied Mathematics, vol. 197, no. 1, pp. 188–203, 2006. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  22. Z. Wang, Y. Liu, and X. Liu, “On global asymptotic stability of neural networks with discrete and distributed delays,” Physics Letters A, vol. 345, no. 4-6, pp. 299–308, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. Z. Wang, H. Shu, Y. Liu, D. W. C. Ho, and X. Liu, “Robust stability analysis of generalized neural networks with discrete and distributed time delays,” Chaos, Solitons & Fractals, vol. 30, no. 4, pp. 886–896, 2006. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  24. R. Rakkiyappan and P. Balasubramaniam, “Dynamic analysis of Markovian jumping impulsive stochastic Cohen-Grossberg neural networks with discrete interval and distributed time-varying delays,” Nonlinear Analysis: Hybrid Systems, vol. 3, no. 4, pp. 408–417, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  25. T. Li and S. M. Fei, “Stability analysis of Cohen-Grossberg neural networks with time-varying and distributed delays,” Neurocomputing, vol. 71, no. 4-6, pp. 1069–1081, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. R. Samidurai, S. M. Anthoni, and K. Balachandran, “Global exponential stability of neutral-type impulsive neural networks with discrete and distributed delays,” Nonlinear Analysis: Hybrid Systems, vol. 4, no. 1, pp. 103–112, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  27. Q.-L. Han, “On designing time-varying delay feedback controllers for master-slave synchronization of Lur'e systems,” IEEE Transactions on Circuits and Systems I, vol. 54, no. 7, pp. 1573–1583, 2007. View at Publisher · View at Google Scholar
  28. D. Yue, E. Tian, Y. Zhang, and C. Peng, “Delay-distribution-dependent stability and stabilization of T-S fuzzy systems with probabilistic interval delay,” IEEE Transactions on Systems, Man, and Cybernetics, Part B, vol. 39, no. 2, pp. 503–516, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. H. Shao, “New delay-dependent stability criteria for systems with interval delay,” Automatica, vol. 45, no. 3, pp. 744–749, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  30. P. Park and J. W. Ko, “Stability and robust stability for systems with a time-varying delay,” Automatica, vol. 43, no. 10, pp. 1855–1858, 2007. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  31. P. Park, J. W. Ko, and C. Jeong, “Reciprocally convex approach to stability of systems with time-varying delays,” Automatica, vol. 47, no. 1, pp. 235–238, 2011. View at Publisher · View at Google Scholar · View at Scopus