Table of Contents Author Guidelines Submit a Manuscript
Mathematical Problems in Engineering
Volume 2012, Article ID 848741, 18 pages
http://dx.doi.org/10.1155/2012/848741
Research Article

Thrust Vector Control of an Upper-Stage Rocket with Multiple Propellant Slosh Modes

Department of Physical Sciences, Embry-Riddle Aeronautical University, Daytona Beach, FL 32114, USA

Received 24 May 2012; Revised 4 July 2012; Accepted 4 July 2012

Academic Editor: J. Rodellar

Copyright © 2012 Jaime Rubio Hervas and Mahmut Reyhanoglu. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. C. Biswal, S. K. Bhattacharyya, and P. K. Sinha, “Dynamic characteristics of liquid filled rectangular tank with baffles,” Journal of the Institution of Engineers, vol. 84, no. 2, pp. 145–148, 2003. View at Google Scholar · View at Scopus
  2. F. T. Dodge, The New “Dynamic Behavior of Liquids in Moving Containers”, Southwest Research Institute, San Antonio, Tex, USA, 2000.
  3. J. T. Feddema, C. R. Dohrmann, G. G. Parker, R. D. Robinett, V. J. Romero, and D. J. Schmitt, “Control for slosh-free motion of an open container,” IEEE Control Systems Magazine, vol. 17, no. 1, pp. 29–36, 1997. View at Google Scholar · View at Scopus
  4. M. Grundelius, “Iterative optimal control of liquid slosh in an industrial packaging machine,” in Proceedings of the 39th IEEE Conference on Decision and Control, pp. 3427–3432, aus, December 2000. View at Scopus
  5. M. Grundelius and B. Bernhardsson, “Control of liquid slosh in an industrial packaging machine,” in Proceedings of the IEEE International Conference on Control Applications (CCA) and IEEE International Symposium on Computer Aided Control System Design (CACSD), pp. 1654–1659, August 1999. View at Scopus
  6. K. Terashima and G. Schmidt, “Motion control of a cart-based container considering suppression of liquid oscillations,” in Proceedings of the 1994 IEEE International Symposium on Industrial Electronics, pp. 275–280, May 1994. View at Scopus
  7. K. Yano and K. Terashima, “Robust liquid container transfer control for complete sloshing suppression,” IEEE Transactions on Control Systems Technology, vol. 9, no. 3, pp. 483–493, 2001. View at Publisher · View at Google Scholar · View at Scopus
  8. K. Yano and K. Terashima, “Sloshing suppression control of liquid transfer systems considering a 3-D transfer path,” IEEE/ASME Transactions on Mechatronics, vol. 10, no. 1, pp. 8–16, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. A. Aboel-Hassan, M. Arafa, and A. Nassef, “Design and optimization of input shapers for liquid slosh suppression,” Journal of Sound and Vibration, vol. 320, no. 1-2, pp. 1–15, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. Q. Naiming, D. Kai, W. Xianlu, and L. Yunqian, “Spacecraft propellant sloshing suppression using input shaping technique,” in Proceedings of the International Conference on Computer Modeling and Simulation (ICCMS '09), pp. 162–166, chn, February 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. B. Pridgen, K. Bai, and W. Singhose, “Slosh suppression by robust input shaping,” in Proceedings of the 49th IEEE Conference on Decision and Control (CDC '10), pp. 2316–2321, December 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. A. E. Bryson, Control of Spacecraft and Aircraft, Princeton University Press, Princeton, NJ, USA, 1994.
  13. B. Wie, Space Vehicle Dynamics and Control, AIAA Education Series, Reston, Va, USA, 1998.
  14. J. M. Adler, M. S. Lee, and J. D. Saugen, “Adaptive control of propellant slosh for launch vehicles,” in Proceedings of the Sensors and Sensor Integration, pp. 11–22, April 1991. View at Scopus
  15. B. Bandyopadhyay, P. S. Gandhi, and S. Kurode, “Sliding mode observer based sliding mode controller for slosh-free motion through PID scheme,” IEEE Transactions on Industrial Electronics, vol. 56, no. 9, pp. 3432–3442, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Reyhanoglu and J. R. Hervas, “Nonlinear control of space vehicles with multi-mass fuel slosh dynamics,” in Proceedings of International Conference on Recent Advances in Space Technologies, pp. 247–252, 2011.
  17. P. J. Enright and E. C. Wong, “Propellant slosh models for the cassini spacecraft,” in Proceedings of AIAA/AAS Consference, AIAA-94-3730-CP, pp. 186–195, 1994.
  18. E. Perez, Vega User's Manual, Issue 3, Arianespace, Washington, DC, USA, 2006.
  19. M. J. Sidi, Spacecraft Dynamics and Control, Cambridge Aerospace Series, Cambridge University Press, Cambridge, UK, 1997.
  20. M. Reyhanoglu, S. Cho, and N. H. McClamroch, “Discontinuous feedback control of a special class of underactuated mechanical systems,” International Journal of Robust and Nonlinear Control, vol. 10, no. 4, pp. 265–281, 2000. View at Google Scholar
  21. H. Krishnan, H. McClamroch, and M. Reyhanoglu, “On the attitude stabilization of a rigid spacecraft using two control torques,” in Proceedings of the American Control Conference, pp. 1990–1995, June 1992. View at Scopus
  22. M. Reyhanoglu, “Maneuvering control problems for a spacecraft with unactuated fuel slosh dynamics,” in Proceedings of 2003 IEEE Conference on Control Applications, pp. 695–699, tur, June 2003. View at Scopus
  23. A. D. Mahindrakar, R. N. Banavar, and M. Reyhanoglu, “Controllability and point-to-point control of 3-DOF planar horizontal underactuated manipulators,” International Journal of Control, vol. 78, no. 1, pp. 1–13, 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. H. K. Khalil, Nonlinear Systems, Prentice-Hall, New York, NY, USA, 3rd edition, 2002.