Table of Contents Author Guidelines Submit a Manuscript
Mathematical Problems in Engineering
Volume 2013, Article ID 108386, 13 pages
http://dx.doi.org/10.1155/2013/108386
Research Article

Markov Chain Models for the Stochastic Modeling of Pitting Corrosion

1Departamento de Ingeniería Metalúrgica, IPN-ESIQIE, UPALM s/n, Edificio 7, Zacatenco, 07738 México, DF, Mexico
2Universidad Autónoma de la Ciudad de México, 09790 México, DF, Mexico
3Departamento de Ingeniería Química Industrial, ESIQIE-IPN, UPALM Edificio 7, Zacatenco, 07738 México, DF, Mexico

Received 1 February 2013; Revised 19 April 2013; Accepted 3 May 2013

Academic Editor: Wuquan Li

Copyright © 2013 A. Valor et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. S. Chen, K. C. Wan, G. Gao, R. P. Wei, and T. H. Flournoy, “Transition from pitting to fatigue crack growth—modeling of corrosion fatigue crack nucleation in a 2024-T3 aluminum alloy,” Materials Science and Engineering A, vol. 219, no. 1-2, pp. 126–132, 1996. View at Publisher · View at Google Scholar · View at Scopus
  2. M. Nessin, “Estimating the risk of pipeline failure due to corrosion,” in Uhlig’s Corrosion Handbook, W. Revie, Ed., p. 85, John Wiley & Sons, 2nd edition, 2000. View at Google Scholar
  3. T. Shibata and T. Takeyama, “Pitting corrosion as a stochastic process,” Nature, vol. 260, no. 5549, pp. 315–316, 1976. View at Publisher · View at Google Scholar · View at Scopus
  4. G. S. Frankel, “Pitting corrosion of metals: a review of the critical factors,” Journal of the Electrochemical Society, vol. 145, no. 6, pp. 2186–2198, 1998. View at Google Scholar · View at Scopus
  5. G. T. Burstein, C. Liu, R. M. Souto, and S. P. Vines, “Origins of pitting corrosion,” Corrosion Engineering Science and Technology, vol. 39, no. 1, pp. 25–30, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. P. M. Aziz, “Application of the statistical theory of extreme values to the analysis of maximum pit depth data for aluminum,” Corrosion, vol. 12, pp. 495t–506t, 1956. View at Google Scholar
  7. D. Rivas, F. Caleyo, A. Valor, and J. M. Hallen, “Extreme value analysis applied to pitting corrosion experiments in low carbon steel: comparison of block maxima and peak over threshold approaches,” Corrosion Science, vol. 50, no. 11, pp. 3193–3204, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. J. C. Velázquez, F. Caleyo, A. Valor, and J. M. Hallen, “Predictive model for pitting corrosion in buried oil and gas pipelines,” Corrosion, vol. 65, no. 5, pp. 332–342, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. F. Caleyo, J. C. Velázquez, A. Valor, and J. M. Hallen, “Probability distribution of pitting corrosion depth and rate in underground pipelines: A Monte Carlo Study,” Corrosion Science, vol. 51, no. 9, pp. 1925–1934, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. Z. Szklarska-Smialowska, “Pitting corrosion of aluminum,” Corrosion Science, vol. 41, no. 9, pp. 1743–1767, 1999. View at Publisher · View at Google Scholar · View at Scopus
  11. W. Zhang and G. S. Frankel, “Localized corrosion growth kinetics in AA2024 alloys,” Journal of the Electrochemical Society, vol. 149, no. 11, pp. B510–B519, 2002. View at Publisher · View at Google Scholar · View at Scopus
  12. F. Hunkeler and H. Bohni, “Mechanism of pit growth on aluminum under open circuit conditions,” Corrosion, vol. 40, no. 10, pp. 534–540, 1984. View at Google Scholar · View at Scopus
  13. T. Shibata, “1996 W.R. Whitney Award Lecture: statistical and stochastic approaches to localized corrosion,” Corrosion, vol. 52, no. 11, pp. 813–830, 1996. View at Google Scholar · View at Scopus
  14. J. W. Provan and E. S. Rodriguez, “Part I: Development of a Markov description of pitting corrosion,” Corrosion, vol. 45, no. 3, pp. 178–192, 1989. View at Google Scholar · View at Scopus
  15. A. Valor, F. Caleyo, L. Alfonso, D. Rivas, and J. M. Hallen, “Stochastic modeling of pitting corrosion: a new model for initiation and growth of multiple corrosion pits,” Corrosion Science, vol. 49, no. 2, pp. 559–579, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. T. B. Morrison and R. G. Worthingham, “Reliability of high pressure line pipe under external corrosion,” in Proceedings of the 11th ASME International Conference Offshore Mechanics and Arctic Engineering, vol. 5, part B, pp. 401–408, Calgary, Canada, June 1992.
  17. H. P. Hong, “Inspection and maintenance planning of pipeline under external corrosion considering generation of new defects,” Structural Safety, vol. 21, no. 3, pp. 203–222, 1999. View at Publisher · View at Google Scholar · View at Scopus
  18. F. Caleyo, J. C. Velázquez, A. Valor, and J. M. Hallen, “Markov chain modelling of pitting corrosion in underground pipelines,” Corrosion Science, vol. 51, no. 9, pp. 2197–2207, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. F. Bolzoni, P. Fassina, G. Fumagalli, L. Lazzari, and E. Mazzola, “Application of probabilistic models to localised corrosion study,” Metallurgia Italiana, vol. 98, no. 6, pp. 9–15, 2006. View at Google Scholar · View at Scopus
  20. S. A. Timashev, M. G. Malyukova, L. V. Poluian, and A. V. Bushiskaya, “Markov description of corrosion defects growth and its application to reliability based inspection and maintenance of pipelines,” in Proceedings of the 7th ASME International Pipeline Conference (IPC '08), Calgary, Canada, September 2008, Paper IPC2008-64546.
  21. T. B. Morrison and G. Desjardin, “Determination of corrosion rates from single inline inspection of a pipeline,” in Proceedings of the NACE One Day Seminar, Houston, Tex, USA, December 1998.
  22. Y. Katano, K. Miyata, H. Shimizu, and T. Isogai, “Predictive model for pit growth on underground pipes,” Corrosion, vol. 59, no. 2, pp. 155–161, 2003. View at Google Scholar · View at Scopus
  23. A. K. Sheikh, J. K. Boah, and D. A. Hansen, “Statistical modelling of pitting corrosion and pipeline reliability,” Corrosion, vol. 46, no. 3, pp. 190–196, 1990. View at Google Scholar · View at Scopus
  24. M. Kowaka, Ed., Introduction to Life Prediction of Industrial Plant Materials: Application of the Extreme Value Statistical Method for Corrosion Analysis, Allerton Press, New York, NY, USA, 1994.
  25. A. Valor, D. Rivas, F. Caleyo, and J. M. Hallen, “Discussion: statistical characterization of pitting corrosion—Part 1: Data analysis and part 2: Probabilistic modeling for maximum pit depth,” Corrosion, vol. 63, no. 2, pp. 107–113, 2007. View at Google Scholar · View at Scopus
  26. E. J. Gumbel, Statistics of Extremes, Columbia University Press, New York, NY, USA, 2004.
  27. E. Castillo, Extreme Value Theory in Engineering, Academic Press, San Diego, Calif, USA, 1988. View at Zentralblatt MATH · View at MathSciNet
  28. E. Parzen, Stochastic Processes, vol. 24, SIAM, Philadelphia, Pa, USA, 1999. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  29. D. R. Cox and H. D. Miller, The Theory of Stochastic Processes, Chapman & Hall/CRC, Boca Raton, Fla, USA, 1st edition, 1965. View at Zentralblatt MATH · View at MathSciNet
  30. S. Coles, An Introduction to Statistical Modeling of Extreme Values, Springer Series in Statistics, Springer, London, UK, 2001. View at Zentralblatt MATH · View at MathSciNet
  31. F. Caleyo, L. Alfonso, J. H. Espina-Hernández, and J. M. Hallen, “Criteria for performance assessment and calibration of in-line inspections of oil and gas pipelines,” Measurement Science and Technology, vol. 18, no. 7, pp. 1787–1799, 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. Specification for Line Pipe, API Specification 5L, American Petroleum Institute, Washington, DC, USA, 42nd edition, 2001.
  33. H. Ascher and H. Feingold, Repairable Systems Reliability. Modeling, Inference, Misconceptions and Their Causes, vol. 7, Marcel Dekker, New York, NY, USA, 1984. View at Zentralblatt MATH · View at MathSciNet
  34. A. Valor, F. Caleyo, D. Rivas, and J. M. Hallen, “Stochastic approach to pitting-corrosion-extreme modelling in low-carbon steel,” Corrosion Science, vol. 52, no. 3, pp. 910–915, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. G. Wranglen, “Pitting and sulphide inclusions in steel,” Corrosion Science, vol. 14, no. 5, pp. 331–349, 1974. View at Google Scholar · View at Scopus