Table of Contents Author Guidelines Submit a Manuscript
Mathematical Problems in Engineering
Volume 2013, Article ID 163839, 7 pages
http://dx.doi.org/10.1155/2013/163839
Research Article

CFD Simulation of Heat Transfer and Friction Factor Augmentation in a Circular Tube Fitted with Elliptic-Cut Twisted Tape Inserts

1Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
2Biochemical Engineering Department, Al-Khwarizmi College of Engineering, University of Baghdad, Baghdad 47024, Iraq

Received 30 April 2013; Accepted 10 June 2013

Academic Editor: Tirivanhu Chinyoka

Copyright © 2013 Sami D. Salman et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

This paper presents the application of a mathematical model for simulation of the swirling flow in a tube induced by elliptic-cut and classical twist tape inserts. Effects of the twist ratio (.93, 3.91, and 4.89) and cut depth (, 0.8, and 1.4 cm) on heat transfer enhancement (Nu) and friction factor (f) in laminar flow are numerically investigated. The simulation is carried out using commercial CFD package (FLUENT-6.3.26) to grasp the physical behaviour of the thermal and fluid flows of a constant heat-fluxed tube fitted with elliptic-cut twist tape in the laminar flow regime for the Reynolds number ranging from 200 to 2100. The simulated results matched the literature correlations of plain tube for validation with 8% variation for Nusselt number and 10% for friction factor. The results show that the heat transfer rate and friction factor in the tube equipped with elliptic-cut twist tape (ECT) are significantly higher than those fitted with classical twist tape (CTT). Moreover the results also reveal that the Nusselt number and the friction factor in the tube with elliptic-cut twisted tape (ECT) increase with decreasing twist ratios (y) and cut depths (w).