Table of Contents Author Guidelines Submit a Manuscript
Mathematical Problems in Engineering
Volume 2013 (2013), Article ID 170317, 8 pages
http://dx.doi.org/10.1155/2013/170317
Research Article

Numerical Simulation on the Effect of Turbulence Models on Impingement Cooling of Double Chamber Model

College of Mechanical Science & Engineering, Jilin University, Changchun 130025, China

Received 5 August 2013; Revised 17 October 2013; Accepted 17 October 2013

Academic Editor: Waqar Khan

Copyright © 2013 Zhenglei Yu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. C. Han, S. Dutta, and S. V. Ekkad, Gas Turbine Heat Transfer and Cooling Technology, Taylor and Francis, New York, NY, USA, 2000.
  2. N. Zuckerman and N. Lior, “Impingement heat transfer: correlations and numerical modeling,” Journal of Heat Transfer, vol. 127, no. 5, pp. 544–552, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. A. A. Tawfek, “Heat transfer studies of the oblique impingement of round jets upon a curved surface,” Heat and Mass Transfer, vol. 38, no. 6, pp. 467–475, 2002. View at Publisher · View at Google Scholar · View at Scopus
  4. Z. L. Yu, T. Xu, J. L. Li, L. Ma, and T. S. Xu, “Comparison of a series of double chamber model with various hole angles for enhancing cooling effectiveness,” International Communications in Heat and Mass Transfer, vol. 44, pp. 38–44, 2013. View at Publisher · View at Google Scholar
  5. S. Göppert, T. Gürtler, H. Mocikat, and H. Herwig, “Heat transfer under a precessing jet: effects of unsteady jet impingement,” International Journal of Heat and Mass Transfer, vol. 47, no. 12-13, pp. 2795–2806, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. S. D. Hwang, C. H. Lee, and H. H. Cho, “Heat transfer and flow structures in axisymmetric impinging jet controlled by vortex pairing,” International Journal of Heat and Fluid Flow, vol. 22, no. 3, pp. 293–300, 2001. View at Publisher · View at Google Scholar · View at Scopus
  7. S. Polat, B. Huang, A. S. Mujumdar, and W. J. M. Douglas, “Numerical flow and heat transfer under impinging jets: a review,” Annual Review of Numerical Fluid Mechanics and Heat Transfer, vol. 2, pp. 157–197, 1989. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  8. P. Y. Tzeng, C. Y. Soong, and C. D. Hsieh, “Numerical investigation of heat transfer under confined impinging turbulent slot jets,” Numerical Heat Transfer A, vol. 35, no. 8, pp. 903–924, 1999. View at Publisher · View at Google Scholar · View at Scopus
  9. U. Heck, U. Fritsching, and K. Bauckhage, “Fluid flow and heat transfer in gas jet quenching of a cylinder,” International Journal of Numerical Methods for Heat and Fluid Flow, vol. 11, no. 1, pp. 36–49, 2001. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  10. T. Cziesla, G. Biswas, H. Chattopadhyay, and N. K. Mitra, “Large-eddy simulation of flow and heat transfer in an impinging slot jet,” International Journal of Heat and Fluid Flow, vol. 22, no. 5, pp. 500–508, 2001. View at Publisher · View at Google Scholar · View at Scopus
  11. M. Silieti, E. Divo, and A. J. Kassab, “Film cooling effectiveness from a single scaled-up fan-shaped hole a CFD simulation of adiabatic and conjugate heat transfer models,” in Proceedings of the ASME Turbo Expo: Power for Land, Sea, and Air, pp. 431–441, June 2005, paper no. GT2005-68431. View at Scopus
  12. S. H. Park, S. W. Park, S. H. Rhee, S. B. Lee, J.-E. Choi, and S. H. Kang, “Investigation on the wall function implementation for the prediction of ship resistance,” International Journal of Naval Architecture and Ocean Engineering, vol. 5, no. 1, pp. 33–46, 2013. View at Publisher · View at Google Scholar
  13. S.-E. Kim and S. H. Rhee, “Efficient engineering prediction of turbulentwing tip vortex flows,” Computer Modeling in Engineering and Sciences, vol. 62, no. 3, pp. 291–309, 2010. View at Google Scholar · View at Scopus
  14. Z. L. Yu, T. Xu, J. L. Li, T. S. Xu, and Y. Tatsuo, “Computational analysis of droplet mass and size effect on mist/air impingement cooling performance,” Advances in Mechanical Engineering, vol. 2013, Article ID 181856, 8 pages, 2013. View at Publisher · View at Google Scholar
  15. M. Behnia, S. Parneix, Y. Shabany, and P. A. Durbin, “Numerical study of turbulent heat transfer in confined and unconfined impinging jets,” International Journal of Heat and Fluid Flow, vol. 20, no. 1, pp. 1–9, 1999. View at Publisher · View at Google Scholar · View at Scopus
  16. T. H. Park, H. G. Choi, J. Y. Yoo, and S. J. Kim, “Streamline upwind numerical simulation of two-dimensional confined impinging slot jets,” International Journal of Heat and Mass Transfer, vol. 46, no. 2, pp. 251–262, 2003. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  17. Y. Huang, S. Wang, and V. Yang, “Systematic analysis of lean-premixed swirl-stabilized combustion,” AIAA Journal, vol. 44, no. 4, pp. 724–740, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. V. Moureau, P. Domingo, and L. Vervisch, “From large-eddy simulation to direct numerical simulation of a lean premixed swirl flame: filtered laminar flame-PDF modeling,” Combustion and Flame, vol. 158, no. 7, pp. 1340–1357, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. J. Benoit, C. Johnston, and M. Zingg, “Enhancing gas turbine power plant profitability: chronic transition piece and turbine part failures in some 501F gas turbines led to a replacement part redesign,” Power Engineering, vol. 111, no. 11, pp. 140–144, 2007. View at Google Scholar · View at Scopus
  20. M. Moshfeghi, Y. J. Song, and Y. H. Xie, “Effects of near-wall grid spacing on SST-K-ω model using NREL Phase VI horizontal axis wind turbine,” Journal of Wind Engineering and Industrial Aerodynamics, vol. 107, pp. 94–105, 2012. View at Publisher · View at Google Scholar · View at Scopus
  21. H. Wu, J. Wang, and Z. Tao, “Evaluation of predicted heat transfer on a transonic vane using v2-f turbulence models,” Journal of Thermal Science and Technology, vol. 6, no. 3, pp. 424–435, 2011. View at Publisher · View at Google Scholar