Table of Contents Author Guidelines Submit a Manuscript
Mathematical Problems in Engineering
Volume 2013, Article ID 172783, 12 pages
http://dx.doi.org/10.1155/2013/172783
Research Article

Differential Evolution for Lifetime Maximization of Heterogeneous Wireless Sensor Networks

1College of Information and Technology, DongHua University, Shanghai 201620, China
2Institute of Information and Technology, Henan University of Traditional Chinese Medicine, Zhengzhou 450003, China
3Office of Putuo District, Ganquan Road Subdistrict, Shanghai 200065, China

Received 9 January 2013; Revised 1 February 2013; Accepted 12 February 2013

Academic Editor: Yang Tang

Copyright © 2013 Yulong Xu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. T. D. Raty, “Survey on contemporary remote surveillance systems for public safety,” IEEE Transactions on Systems, Man, and Cybernetics, Part C, vol. 40, no. 5, pp. 493–515, 2010. View at Google Scholar
  2. I. F. Akyildiz, T. Melodia, and K. R. Chowdury, “Wireless multimedia sensor networks: a survey,” IEEE Wireless Communications, vol. 14, no. 6, pp. 32–39, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. M. Younis and K. Akkaya, “Strategies and techniques for node place-ment in wireless sensor networks: a survey,” Ad Hoc Networks, vol. 6, no. 4, pp. 621–655, 2008. View at Google Scholar
  4. I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “A survey on sensor networks,” IEEE Communications Magazine, vol. 40, no. 8, pp. 102–114, 2002. View at Publisher · View at Google Scholar · View at Scopus
  5. J. Yick, B. Mukherjee, and D. Ghosal, “Wireless sensor network survey,” Computer Networks, vol. 52, no. 12, pp. 2292–2330, 2008. View at Google Scholar
  6. I. Dietrich and F. Dressler, “On the lifetime of wireless sensor networks,” ACM Transactions on Sensor Networks, vol. 5, no. 1, article 5, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. F. Marcelloni and M. Vecchio, “A simple algorithm for data compression in wireless sensor networks,” IEEE Communications Letters, vol. 12, no. 6, pp. 411–413, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. S. Yang, H. Cheng, and F. Wang, “Genetic algorithms with immigrants and memory schemes for dynamic shortest path routing problems in mobile ad hoc networks,” IEEE Transactions on Systems, Man and Cybernetics Part C, vol. 40, no. 1, pp. 52–63, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. S. Okdem and D. Karaboga, “Routing in wireless sensor networks using an Ant Colony optimization (ACO) router chip,” Sensors, vol. 9, no. 2, pp. 909–921, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. F. Ge, Y. Wang, Q. Wang, and J. Wang, “Energy efficient broadcasting based on ant colony optimization in wireless sensor networks,” in Proceedings of the 3rd International Conference on Natural Computation ( ICNC '07), pp. 129–133, Haiko, China, 2007.
  11. A. Acharya, A. Seetharam, A. Bhattacharyya, and M. K. Naskar, “Balanc-ing energy dissipation in data gathering wireless sensor networks using ant colony optimization,” in Proceedings of the International Conference on Distributed Computing and Networking (ICDCN '09), pp. 437–443, Hyderabad, India, 2009.
  12. C.-Y. Chang, J.-P. Sheu, Y.-C. Chen, and S.-W. Chang, “An obstacle-free and power-efficient deployment algorithm for wireless sensor networks,” IEEE Transactions on Systems, Man, and Cybernetics Part A, vol. 39, no. 4, pp. 795–806, 2009. View at Google Scholar
  13. H. Chen, C. K. Tse, and J. Feng, “Impact of topology on performance and energy efficiency in wireless sensor networks for source extraction,” IEEE Transactions on Parallel and Distributed Systems, vol. 20, no. 6, pp. 886–897, 2009. View at Google Scholar
  14. Y. Liang, J. Cao, L. Zhang, R. Wang, and Q. Pan, “A biologically inspired sensor wakeup control method for wireless sensor networks,” IEEE Transactions on Systems, Man and Cybernetics Part C, vol. 40, no. 5, pp. 525–538, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. R. Tharmarasa, T. Kirubarajan, and M. L. Hernandez, “Large-scale op-timal sensor array management for multi-target tracking,” IEEE Transactions Systems, Man, and Cybernetics, Part C, vol. 37, no. 5, pp. 803–814, 2007. View at Google Scholar
  16. R. Tharmarasa, T. Kirubarajan, J. Peng, and T. Lang, “Optimization-based dynamic sensor management for distributed multitarget tracking,” IEEE Transactions on Systems, Man and Cybernetics Part C, vol. 39, no. 5, pp. 534–546, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. D. Tian and N. D. Georganas, “Connectivity maintenance and coverage preservation in wireless sensor networks,” Ad Hoc Networks, vol. 3, no. 6, pp. 744–761, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. H. Zhang and J. C. Hou, “Maintaining sensing coverage and connectivity in large sensor networks,” Ad Hoc and Sensor Wireless Networks, vol. 1, no. 1-2, pp. 89–124, 2005. View at Google Scholar
  19. T. R. Park, K. J. Park, and M. J. Lee, “Design and analysis of asynchronous wakeup for wireless sensor networks,” IEEE Transactions on Wireless Communications, vol. 8, no. 11, pp. 5530–5541, 2009. View at Google Scholar
  20. G. Anastasi, M. Conti, M. Di Francesco, and A. Passarella, “Energy conservation in wireless sensor net works: a survey,” Ad Hoc Networks, vol. 7, no. 3, pp. 537–568, 2009. View at Publisher · View at Google Scholar
  21. Y. Lin, J. Zhang, S. H. Chung, and Y. Li, “An ant colony optimization approach for maximizing the lifetime of heterogeneous wireless sensor networks,” IEEE Transactions on Systems, Man, and Cybernetics Part C, vol. 42, no. 3, pp. 408–420, 2012. View at Google Scholar
  22. M. Cardei and D. Z. Zhang, “Improving wireless sensor network lifetimethrough power aware organization,” Wireless Networks, vol. 11, no. 3, pp. 333–340, 2005. View at Google Scholar
  23. S. Slijepcevic and M. Potkonjak, “Power efficient organization of wireless sensor networks,” in Proceedings of the IEEE International Conference on Communications (ICC '01), vol. 2, pp. 472–476, Helsinki, Finland, 2001.
  24. C. C. Lai, C. K. Ting, and R. S. Ko, “An effective genetic algorithm to improve wireless sensor network lifetime for large-scale surveillance applications,” in Proceedings of the IEEE Congress on Evolutionary Computation (CEC '07), pp. 3531–3538, 2007.
  25. X. M. Hu, J. Zhang, Y. Yu et al., “Hybrid genetic algorithm using a forward encoding scheme for lifetime maximization of wireless sensor networks,” IEEE Transactions on Evolutionary Computation, vol. 14, no. 5, pp. 766–781, 2010. View at Google Scholar
  26. Y. P. Zhong, P. W. Huang, and B. Wang, “Maximum lifetime routing based on ant colony algorithm for wireless sensor networks,” in Proceedings of the IET Conference on Wireless, Mobile and Sensor Networks, pp. 789–792, Shanghai, China, 2007.
  27. Q. Zhao and M. Gurusamy, “Lifetime maximization for connected target coverage in wireless sensor net works,” IEEE/ACM Transactions on Networking, vol. 16, no. 6, pp. 1378–1391, 2008. View at Google Scholar
  28. Y. Tang, Z. Wang, and J. A. Fang, “Controller design for synchronization of an array of delayed neural networks using a controllable probabilistic PSO,” Information Sciences, vol. 181, no. 20, pp. 4715–4732, 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. M. Dorigo and L. M. Gambardella, “Ant colony system: a cooperativelearning approach to the traveling salesman problem,” IEEE Transactions on Evolutionary Computation, vol. 1, no. 1, pp. 53–66, 1997. View at Google Scholar
  30. Y. Tang, Z. Wang, and J. Fang, “Feekback learning particle swarm optimization,” Applied Soft Computing, vol. 11, pp. 4713–4725, 2011. View at Google Scholar
  31. Y. Tang and H. J. Gao, “Distributed synchronization in networks of agent systems with nonlinearities and random switchings,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 43, no. 1, pp. 358–370, 2013. View at Google Scholar
  32. S. Das and P. N. Suganthan, “Differential evolution: a survey of the state-of-the-art,” IEEE Transactions on Evolutionary Computation, vol. 15, no. 1, pp. 4–31, 2011. View at Google Scholar
  33. W. Zhu, J. A. Fang, Y. Tang, W. B. Zhang, and Wei Du, “Digital IIR filters design using differential evolution algorithm with a controllable probabilistic population size,” PLoS ONE, vol. 7, no. 7, Article ID e40549, 2012. View at Google Scholar
  34. R. Storn and K. Price, “Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces,” Journal of Global Optimization, vol. 11, no. 4, pp. 341–359, 1997. View at Google Scholar · View at Scopus
  35. Y. Tang, Z. Wang, H. Gao, S. Swift, and J. Kurths, “A constrained evolutionary computation method for detecting controlling regions of cortical networks,” IEEE Transactions on Computational Biology and Bioinformatics, vol. 9, pp. 1569–1581, 2012. View at Google Scholar
  36. W. Zhu, Y. Tang, J. A. Fang, and W. B. Zhang, “Adaptive population tuning scheme for differential evolution,” Information Sciences, vol. 223, pp. 164–191, 2013. View at Google Scholar
  37. W. Zhu, J. A. Fang, Y. Tang, W. B. Zhang, and Y. L. Xu, “Identification of fractional-order systems via a switching differential evolution subject to noise perturbations,” Physics Letters A, vol. 376, pp. 3113–3120, 2012. View at Google Scholar
  38. Y. Tang, H. J. Gao, J. Kurths, and J. A. Fang, “Evolutionary pinning control and its application in uav coordination,” IEEE Transactions on Industrial Informatics, vol. 8, pp. 828–838, 2012. View at Google Scholar
  39. J. Brest, S. Greiner, B. Boskovic et al., “Self-adapting control parameters in differential evolution: a comparative study on numerical benchmark problems,” IEEE Transactions on Evolutionary Computation, vol. 10, no. 6, pp. 646–657, 2006. View at Google Scholar
  40. J. Zhang and A. C. Sanderson, “JADE: adaptive differential evolution with optional external archive,” IEEE Transactions on Evolutionary Computation, vol. 13, no. 5, pp. 945–958, 2009. View at Publisher · View at Google Scholar · View at Scopus
  41. Q. Cao, T. Yan, J. Stankovic, and T. Abdelzaher, “Analysis of target detection performance for wireless sensor networks,” in Proceedings of the 1st IEEE International Conference on Distributed Computing in Sensor Systems (DCOSS '05), pp. 276–292, July 2005. View at Scopus
  42. A. Boukerche, X. Fei, and R. B. Araujo, “An optimal coverage-preserving scheme for wireless sensor networks based on local information exchange,” Computer Communications, vol. 30, no. 14-15, pp. 2708–2720, 2007. View at Publisher · View at Google Scholar · View at Scopus
  43. V. Feoktistov and S. Janaqi, “Generalization of the strategies in differential evolution,” in Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS '04), p. 165, April 2004.
  44. J. Ronkkonen, S. Kukkonen, and K. V. Price, “Real parameter optimiza-tion with differential evolution,” in Proceedings of the IEEE Congress on Evolutionary Computation, vol. 1, pp. 506–513, 2005.