Table of Contents Author Guidelines Submit a Manuscript
Mathematical Problems in Engineering
Volume 2013, Article ID 179390, 10 pages
http://dx.doi.org/10.1155/2013/179390
Research Article

A Novel System Anomaly Prediction System Based on Belief Markov Model and Ensemble Classification

College of Computer Science and Technology, Zhejiang University, Hangzhou 310012, China

Received 17 March 2013; Revised 13 July 2013; Accepted 31 July 2013

Academic Editor: Yingwei Zhang

Copyright © 2013 Xiaozhen Zhou et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Ray, “Symbolic dynamic analysis of complex systems for anomaly detection,” Signal Processing, vol. 84, no. 7, pp. 1115–1130, 2004. View at Publisher · View at Google Scholar · View at Scopus
  2. F. Salfner, M. Lenk, and M. Malek, “A survey of online failure prediction methods,” ACM Computing Surveys, vol. 42, no. 3, article 10, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. F. Salfner and M. Malek, “Using hidden semi-Markov models for effective online failure prediction,” in Proceedings of the 26th IEEE International Symposium on Reliable Distributed Systems (SRDS '07), pp. 161–174, October 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. E. Kiciman and A. Fox, “Detecting application-level failures in component-based Internet services,” IEEE Transactions on Neural Networks, vol. 16, no. 5, pp. 1027–1041, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. Y. Zhang and C. Ma, “Fault diagnosis of nonlinear processes using multiscale KPCA and multiscale KPLS,” Chemical Engineering Science, vol. 66, no. 1, pp. 64–72, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. Y. Zhang, H. Zhou, S. J. Qin, and T. Chai, “Decentralized fault diagnosis of large-scale processes using multiblock kernel partial least squares,” IEEE Transactions on Industrial Informatics, vol. 6, no. 1, pp. 3–10, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. Y. Zhang, “Modeling and monitoring of dynamic processes,” IEEE Transactions on Neural Networks and Learning System, vol. 23, no. 2, pp. 277–284, 2012. View at Google Scholar
  8. Y. Liang, Y. Zhang, H. Xiong, and R. Sahoo, “Failure prediction in IBM BlueGene/L event logs,” in Proceedings of the 7th IEEE International Conference on Data Mining (ICDM '07), pp. 583–588, October 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. P. Zhang, H. Muccini, A. Polini, and X. Li, “Run-time systems failure prediction via proactive monitoring,” in Proceedings of the 26th IEEE/ACM International Conference on Automated Software Engineering (ASE '11), pp. 484–487, November 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. Y. Tan and X. Gu, “On predictability of system anomalies in real world,” in Proceedings of the 18th Annual IEEE/ACM International Symposium on Modeling, Analysis and Simulation of Computer and Telecommunication Systems (MASCOTS '10), pp. 133–140, August 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. G. Luo, K.-L. Wu, and P. S. Yu, “Answering linear optimization queries with an approximate stream index,” Knowledge and Information Systems, vol. 20, no. 1, pp. 95–121, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. X. Gu and H. Wang, “Online anomaly prediction for robust cluster systems,” in Proceedings of the 25th IEEE International Conference on Data Engineering (ICDE '09), pp. 1000–1011, April 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. H. Soubaras, “On evidential markov chains,” in Foundations of Reasoning Under Uncertainty, vol. 249 of Studies in Fuzziness and Soft Computing, pp. 247–264, Springer, Berlin, Germany, 2010. View at Google Scholar
  14. C. C. Aggarwal, J. Han, J. Wang, and P. S. Yu, “A framework for clustering evolving data streams,” in Proceedings of the International Conference on Very Large Data Bases (VLDB '03), pp. 81–92, 2003.
  15. P. Zhang, X. Zhu, Y. Shi, L. Guo, and X. Wu, “Robust ensemble learning for mining noisy data streams,” Decision Support Systems, vol. 50, no. 2, pp. 469–479, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. Y. Zhao, Y. Tan, Z. Gong, X. Gu, and M. Wamboldt, “Self-correlating predictive information tracking for large-scale production systems,” in Proceedings of the 6th International Conference on Autonomic Computing (ICAC '09), pp. 33–42, Barcelona, Spain, June 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. C.-H. Lee, Y.-L. Lo, and Y.-H. Fu, “A novel prediction model based on hierarchical characteristic of web site,” Expert Systems with Applications, vol. 38, no. 4, pp. 3422–3430, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. D. Katsaros and Y. Manolopoulos, “Prediction in wireless networks by Markov chains,” IEEE Wireless Communications, vol. 16, no. 2, pp. 56–63, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. J. Y. Halpern, Reasoning about Uncertainty, MIT Press, Cambridge, Mass, USA, 2003. View at Zentralblatt MATH · View at MathSciNet
  20. J. Han and M. Kamber, Data Mining: Concepts and Techniques, Morgan Kaufmann, 2006.
  21. S. Pang, S. Ozawa, and N. Kasabov, “Incremental linear discriminant analysis for classification of data streams,” IEEE Transactions on Systems, Man, and Cybernetics B, vol. 35, no. 5, pp. 905–914, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. Y. Zhao, Y. Tan, Z. Gong, X. Gu, and M. Wamboldt, “Self-correlating predictive information tracking for large-scale production systems,” in Proceedings of the 6th International Conference on Autonomic Computing (ICAC '09), pp. 33–42, ACM, June 2009. View at Publisher · View at Google Scholar · View at Scopus