Table of Contents Author Guidelines Submit a Manuscript
Mathematical Problems in Engineering
Volume 2013, Article ID 234270, 8 pages
Research Article

Application of the Kalman Filter to Estimate the State of an Aerobraking Maneuver

National Institute for Space Research (INPE), Avenida dos Astronautas, 1758, Jardim da Granja, 12227-010 São José dos Campos, SP, Brazil

Received 30 April 2013; Revised 11 June 2013; Accepted 17 June 2013

Academic Editor: Vivian Gomes

Copyright © 2013 Willer Gomes dos Santos et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


This paper presents a study about the application of a Kalman filter to estimate the position and velocity of a spacecraft in an aerobraking maneuver around the Earth. The cis-lunar aerobraking of the Hiten spacecraft as well as an aerobraking in a LEO orbit are simulated in this paper. The simulator developed considers a reference trajectory and a trajectory perturbed by external disturbances combined with nonidealities of sensors and actuators. It is able to operate in closed loop controlling the trajectory at each instant of time using a PID controller and propulsive jets. A Kalman filter utilizes the sensor data to estimate the state of the spacecraft. The estimation algorithms and propagation equations used in this process are presented. The U.S. Standard Atmosphere is adopted as the atmospheric model. The main results are compared with the case where the Kalman filter is not used. Therefore, it was possible to perform an analysis of the Kalman filter importance applied to an aerobraking maneuver.