Table of Contents Author Guidelines Submit a Manuscript
Mathematical Problems in Engineering
Volume 2013, Article ID 254865, 11 pages
http://dx.doi.org/10.1155/2013/254865
Research Article

Earthquake Damage Assessment for RC Structures Based on Fuzzy Sets

Beijing Key Lab of Earthquake Engineering and Structural Retrofit, Beijing University of Technology, Beijing 100124, China

Received 3 August 2013; Revised 25 October 2013; Accepted 28 October 2013

Academic Editor: Anaxagoras Elenas

Copyright © 2013 Haoxiang He et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. SEAOC, Vision 2000: Performance Based Seismic Engineering of Buildings. Sacramento (CA, USA), Structural Engineers Association of California, 1995.
  2. A. Ghobarah, “Performance-based design in earthquake engineering: state of development,” Engineering Structures, vol. 23, no. 8, pp. 878–884, 2001. View at Publisher · View at Google Scholar · View at Scopus
  3. M. J. N. Priestley, G. M. Calvi, and M. J. Kowalsky, Displacement Based Seismic Design of Structures, IUSS Press, Pavia, Italy, 2007.
  4. A. Ghobarah, H. Abou-Elfath, and A. Biddah, “Response based damage assessment of structures,” Earthquake Engineering & Structural Dynamics, vol. 28, no. 1, pp. 29–104, 1999. View at Google Scholar
  5. E. Dipasquale and A. S. Cakmak, “On the relation between local and global damage indices,” Technical Report NCEER-89-0034, State University of New York at Buffalo, 1989. View at Google Scholar
  6. P. Fajfar, “Capacity spectrum method based on inelastic demand spectra,” Earthquake Engineering & Structural Dynamics, vol. 28, no. 5, pp. 979–993, 1999. View at Google Scholar
  7. L. A. Zadeh, “Fuzzy sets,” Information and Control, vol. 8, no. 3, pp. 338–353, 1965. View at Google Scholar · View at Scopus
  8. Y. J. Park, A. H. S. Ang, and Y. K. Wen, “Seismic damage analysis and damage limiting design of R.C. buildings,” Structural Research Serial Report UILU-ENG-84-2007, University of Illinois at Urbana-Champaign, Urbana, Ill, USA, 1984. View at Google Scholar
  9. Y.-J. Park and A. H.-S. Ang, “Mechanistic seismic damage model for reinforced concrete,” Journal of Structural Engineering, vol. 111, no. 4, pp. 722–739, 1985. View at Google Scholar · View at Scopus
  10. D. Datta and S. Ghosh, “Uniform hazard spectra based on Park-Ang damage index,” Journal of Earthquake and Tsunami, vol. 2, no. 3, pp. 241–258, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. S. Ghosh, D. Datta, and A. A. Katakdhond, “Estimation of the Park-Ang damage index for planar multi-storey frames using equivalent single-degree systems,” Engineering Structures, vol. 33, no. 9, pp. 2509–2524, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. A. Massumi and E. Moshtagh, “A new damage index for RC buildings based on variations of nonlinear fundamental period,” The Structural Design of Tall and Special Buildings, vol. 22, no. 1, pp. 50–61, 2013. View at Publisher · View at Google Scholar
  13. P. Fajfar, “Consistent inelastic design spectra: hysteretic and input energy,” Earthquake Engineering & Structural Dynamics, vol. 23, no. 3, pp. 523–537, 1994. View at Google Scholar · View at Scopus
  14. S. K. Kunnath and Y. H. Chai, “Cumulative damage-based inelastic cyclic demand spectrum,” Earthquake Engineering & Structural Dynamics, vol. 33, no. 4, pp. 499–520, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. L. Ye and S. Otani, “Maximum seismic displacement of inelastic systems based on energy concept,” Earthquake Engineering & Structural Dynamics, vol. 28, no. 12, pp. 1483–1499, 1999. View at Google Scholar · View at Scopus
  16. C.-C. Chou and C.-M. Uang, “A procedure for evaluating seismic energy demand of framed structures,” Earthquake Engineering & Structural Dynamics, vol. 32, no. 2, pp. 229–244, 2003. View at Publisher · View at Google Scholar · View at Scopus
  17. Y. S. Petryna and W. B. Krätzig, “Compliance-based structural damage measure and its sensitivity to uncertainties,” Computers and Structures, vol. 83, no. 14, pp. 1113–1133, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. M. Sugeno, Industrial Applications of Fuzzy Control, Elsevier Science, New York, NY, USA, 1985.
  19. E. Cox, The Fuzzy Systems Handbook, Academic Press, New York, NY, USA, 2nd edition, 1999.
  20. H. Y. Guo, “Structural damage detection using information fusion technique,” Mechanical Systems and Signal Processing, vol. 20, no. 5, pp. 1173–1188, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. I. Andreadis, I. Tsiftzis, and A. Elenas, “Intelligent seismic acceleration signal processing for damage classification in buildings,” IEEE Transactions on Instrumentation and Measurement, vol. 56, no. 5, pp. 1555–1564, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. N. Bhushan and K. Ria, Strategic Decision Making: Applying the Analytic Hierarchy Process, Springer, London, UK, 2004.
  23. K. N. Li. CANNY99, Three-Dimensional Nonlinear Dynamic Structural Analysis Computer Program Package, CANNY Consultants PTE, Singapore, 1998.