Table of Contents Author Guidelines Submit a Manuscript
Mathematical Problems in Engineering
Volume 2013, Article ID 267629, 9 pages
http://dx.doi.org/10.1155/2013/267629
Research Article

Applicability of Simplified Simulation Models for Perforation-Mediated Modified Atmosphere Packaging of Fresh Produce

Department of Food Science and Biotechnology, Kyungnam University, 449 Woryeong-dong, Masanhappo-gu, Changwon 631-701, Republic of Korea

Received 6 May 2013; Accepted 28 June 2013

Academic Editor: Vanee Chonhenchob

Copyright © 2013 Min-Ji Kwon et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. L. Yam and D. S. Lee, “Design of modified atmosphere packaging for fresh produce,” in Active Food Packaging, M. L. Rooney, Ed., pp. 55–73, Blackie Academic and Professional, London, UK, 1995. View at Google Scholar
  2. A. Exama, J. Arul, R. W. Lencki, L. Z. Lee, and C. Toupin, “Suitability of plastic films for modified atmosphere packaging of fruits and vegetables,” Journal of Food Science, vol. 58, no. 6, pp. 1365–1370, 1993. View at Google Scholar
  3. J. D. Mannapperuma and R. P. Singh, “Modeling of gas exchange in polymeric packages of fresh fruits and vegetables,” in Minimal Processing of Foods and Process Optimization, R. P. Singh and F. A. R. Oliveira, Eds., pp. 437–458, CRC Press, Boca Raton, Fla, USA, 1994. View at Google Scholar
  4. F. A. R. Oliveira, S. C. Fonseca, J. C. Oliveira, J. K. Brecht, and K. V. Chau, “Development of perforation-mediated modified atmosphere packaging to preserve fresh fruit and vegetable quality after harvest,” Food Science and Technology International, vol. 4, no. 5, pp. 339–352, 1998. View at Google Scholar · View at Scopus
  5. J. González, A. Ferrer, R. Oria, and M. L. Salvador, “Determination of O2 and CO2 transmission rates through microperforated films for modified atmosphere packaging of fresh fruits and vegetables,” Journal of Food Engineering, vol. 86, no. 2, pp. 194–201, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. R. Rodriguez-Aguilera and J. C. Oliveira, “Review of design engineering methods and applications of active and modified atmosphere packaging systems,” Food Engineering Reviews, vol. 1, no. 1, pp. 66–83, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. J. González-Buesa, A. Ferrer-Mairal, R. Oria, and M. L. Salvador, “A mathematical model for packaging with microperforated films of fresh-cut fruits and vegetables,” Journal of Food Engineering, vol. 95, no. 1, pp. 158–165, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. D. R. Paul and R. Clarke, “Modeling of modified atmosphere packaging based on designs with a membrane and perforations,” Journal of Membrane Science, vol. 208, no. 1-2, pp. 269–283, 2002. View at Publisher · View at Google Scholar · View at Scopus
  9. V. Del-Valle, E. Almenar, J. M. Lagarón, R. Catalá, and R. Gavara, “Modelling permeation through porous polymeric films for modified atmosphere packaging,” Food Additives and Contaminants, vol. 20, no. 2, pp. 170–179, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. C. Ratti, H. R. Rabie, and G. S. V. Raghavan, “Modelling modified atmosphere storage of fresh cauliflower using diffusion channels,” Journal of Agricultural Engineering Research, vol. 69, no. 4, pp. 343–350, 1998. View at Google Scholar · View at Scopus
  11. Y. H. Jo, N. Y. Kim, D. S. An, H. J. Lee, and D. S. Lee, “Modified atmosphere container equipped with gas diffusion tube automatically controlled in response to real-time gas concentration,” Biosystems Engineering, vol. 115, no. 3, pp. 250–259, 2013. View at Google Scholar
  12. L. Zanderighi, “How to design perforated polymeric films for modified atmosphere packs (MAP),” Packaging Technology and Science, vol. 14, no. 6, pp. 253–266, 2001. View at Publisher · View at Google Scholar · View at Scopus
  13. S. K. Pandey and T. K. Goswami, “Modelling perforated mediated modified atmospheric packaging of capsicum,” International Journal of Food Science and Technology, vol. 47, no. 3, pp. 556–563, 2012. View at Publisher · View at Google Scholar · View at Scopus
  14. O. J. Stewart, G. S. V. Raghavan, K. D. Golden, and Y. Gariépy, “MA storage of Cavendish bananas using silicone membrane and diffusion channel systems,” Postharvest Biology and Technology, vol. 35, no. 3, pp. 309–317, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. J. P. Emond, F. Castaigne, C. J. Toupin, and D. Desilets, “Mathematical modeling of gas exchange in modified atmosphere packaging,” Transactions of the American Society of Agricultural Engineers, vol. 34, no. 1, pp. 239–245, 1991. View at Google Scholar · View at Scopus
  16. S. C. Fonseca, F. A. R. Oliveira, I. B. M. Lino, J. K. Brecht, and K. V. Chau, “Modelling O2 and CO2 exchange for development of perforation-mediated modified atmosphere packaging,” Journal of Food Engineering, vol. 43, no. 1, pp. 9–15, 2000. View at Publisher · View at Google Scholar · View at Scopus
  17. T. J. Rennie and S. Tavoularis, “Perforation-mediated modified atmosphere packaging—part II: implementation and numerical solution of a mathematical model,” Postharvest Biology and Technology, vol. 51, no. 1, pp. 10–20, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. J. C. Montanez, F. A. S. Rodríguez, P. V. Mahajan, and J. M. Frías, “Modelling the gas exchange rate in perforation-mediated modified atmosphere packaging: effect of the external air movement and tube dimensions,” Journal of Food Engineering, vol. 97, no. 1, pp. 79–86, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. N. Techavises and Y. Hikida, “Development of a mathematical model for simulating gas and water vapor exchanges in modified atmosphere packaging with macroscopic perforations,” Journal of Food Engineering, vol. 85, no. 1, pp. 94–104, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. G. Xanthopoulos, E. D. Koronaki, and A. G. Boudouvis, “Mass transport analysis in perforation-mediated modified atmosphere packaging of strawberries,” Journal of Food Engineering, vol. 111, no. 2, pp. 326–335, 2012. View at Publisher · View at Google Scholar · View at Scopus
  21. P. Renault, L. Houal, G. U. Y. Jacquemin, and Y. Chambroy, “Gas exchange in modified atmosphere packaging. 2: experimental results with strawberries,” International Journal of Food Science & Technology, vol. 29, no. 4, pp. 379–394, 1994. View at Google Scholar
  22. D. S. Lee and P. Renault, “Using pinholes as tools to attain optimum modified atmospheres in packages of fresh produce,” Packaging Technology and Science, vol. 11, no. 3, pp. 119–130, 1998. View at Google Scholar · View at Scopus
  23. D. S. Lee, J. S. Kang, and P. Renault, “Dynamics of internal atmosphere and humidity in perforated packages of peeled garlic cloves,” International Journal of Food Science and Technology, vol. 35, no. 5, pp. 455–464, 2000. View at Google Scholar · View at Scopus
  24. D. S. Lee, P. E. Haggar, J. Lee, and K. L. Yam, “Model for fresh produce respiration in modified atmospheres based on principles of enzyme kinetics,” Journal of Food Science, vol. 56, no. 6, pp. 1580–1585, 1991. View at Google Scholar
  25. S. C. Fonseca, F. A. R. Oliveira, and J. K. Brecht, “Modelling respiration rate of fresh fruits and vegetables for modified atmosphere packages: a review,” Journal of Food Engineering, vol. 52, no. 2, pp. 99–119, 2002. View at Publisher · View at Google Scholar · View at Scopus
  26. V. Ghosh and R. C. Anantheswaran, “Oxygen transmission rate through micro-perforated films: measurement and model comparison,” Journal of Food Process Engineering, vol. 24, no. 2, pp. 113–133, 2001. View at Google Scholar · View at Scopus
  27. R. W. Hornbeck, Numerical Methods, Prentice-Hall, Englewood Cliffs, NJ, USA, 1975.
  28. S. Fishman, V. Rodov, J. Peretz, and S. Ben-Yehoshua, “Model for gas exchange dynamics in modified-atmosphere packages of fruits and vegetables,” Journal of Food Science, vol. 60, no. 5, pp. 1078–1987, 1995. View at Google Scholar