Table of Contents Author Guidelines Submit a Manuscript
Mathematical Problems in Engineering
Volume 2013, Article ID 285373, 7 pages
http://dx.doi.org/10.1155/2013/285373
Research Article

Random Numbers Generated from Audio and Video Sources

Department of Healthcare Administration & Medical Informatics, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung 80708, Taiwan

Received 28 January 2013; Revised 20 March 2013; Accepted 21 March 2013

Academic Editor: Wang Xing-yuan

Copyright © 2013 I-Te Chen. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. R. Stinson, Cryptography: Theory and Practice, Chapman & Hall/CRC, New York, NY, USA, 3rd edition, 2005.
  2. J. M. Tsai, J. Tzeng, and I. T. Chen, “Random number generated from white noise of video,” ICIC Express Letter, vol. 6, no. 7, pp. 1827–1832, 2012. View at Google Scholar
  3. NIST, “A statistical test suite for the validation of random number generators and pseudo random number generators for cryptographic applications,” FIPS Special Publication 800-22 Rev.1a, 2010.
  4. J. B. Plumstead, “Inferring a sequence generated by a linear congruence,” in Proceedings of the 23th IEEE Symposium on the Foundations of Computer Science, pp. 153–159, IEEE, New York, NY, USA, 1982. View at Google Scholar · View at MathSciNet
  5. J. A. Reeds, “Cracking random number generator,” Cryptologia, vol. 1, no. 1, pp. 20–26, 1997. View at Google Scholar
  6. J. Boyar, “Inferring sequences produced by pseudo-random number generators,” Journal of the Association for Computing Machinery, vol. 36, no. 1, pp. 129–141, 1989. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  7. P. Alfke, “Efficient shift registers, LFSR, counters, and long pseudo-random sequence generators,” XAPP 052, (Version 1.1), 1996, http://www.xilinx.com/support/documentation/application_notes/xapp052.pdf.
  8. H. Debiao, C. Jianhua, and H. Jin, “A random number generator based on isogenies operations,” 2010, http://eprint.iacr.org/2010/094.
  9. X. Y. Wang and Q. Yu, “A block encryption algorithm based on dynamic sequences of multiple chaotic systems,” Communications in Nonlinear Science and Numerical Simulation, vol. 14, no. 2, pp. 574–581, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  10. X. Y. Wang, X. Qin, and Y. X. Xie, “Pseudo-random sequences generated by a class of one-dimensional smooth map,” Chinese Physics Letters, vol. 28, no. 8, Article ID 080501, 2011. View at Google Scholar
  11. X. Y. Wang and X. Qin, “A new pseudo-random number generator based on CML and chaotic iteration,” Nonlinear Dynamics, vol. 70, no. 2, pp. 1589–1592, 2012. View at Google Scholar
  12. X. Y. Wang and Y. X. Xie, “A design of pseudo-random bit generator based on single chaotic system,” International Journal of Modern Physics C, vol. 23, no. 3, Article ID 1250024, 11 pages, 2012. View at Publisher · View at Google Scholar
  13. X. Y. Wang and L. Yang, “Design of pseudo-random bit generator based on chaotic maps,” International Journal of Modern Physics B, vol. 26, no. 32, Article ID 12502080, 9 pages, 2012. View at Google Scholar
  14. G. Taylor and G. Cox, “Behind intel’s new random number generator,” Semiconductors Processors, 2011, http://spectrum.ieee.org/computing/hardware/behind-intels-new-randomnumber-generator/0.
  15. L. C. Noll, S. Cooper, and M. Pleasant, LavaRnd, 1996, http://www.lavarnd.org.
  16. S. K. Tawfeeq, “A random number generator based on single-photon avalanche photodiode dark counts,” Journal of Lightwave Technology, vol. 27, no. 24, pp. 5665–5667, 2009. View at Publisher · View at Google Scholar
  17. Y. Yamanashi and N. Yoshikawa, “Superconductive random number generator using thermal noises in SFQ circuits,” IEEE Transactions on Applied Superconductivity, vol. 19, no. 3, pp. 630–633, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. X. Y. Wang, X. Qin, and L. Teng, “A novel true random number generator based on mouse movement and a one-dimensional chaotic map,” Mathematical Problems in Engineering, vol. 2012, Article ID 931802, 9 pages, 2012. View at Publisher · View at Google Scholar
  19. Y. A. Alsultanny, “Random-bit sequence generation from image data,” Image and Vision Computing, vol. 26, no. 4, pp. 592–601, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone, Handbook of Applied Cryptography, CRC Press, New York, NY, USA, 1996.
  21. J. Tzeng, I. T. Chen, and J. M. Tsai, “Random number generator designed by the divergence of scaling functions,” in Proceedings of the 5th International Conference on Intelligent Information Hiding and Multimedia Signal Processing (IIH-MSP' 09), pp. 1038–1041, Kyoto, Japan, September 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. NIST, FIPS PUB 140-2, “Derived test requirements for FIPS PUB 140-2, security requirements for cryptographic modules,” Federal Information Processing Standards Publication, 2004. View at Google Scholar
  23. NIST, Revised draft FIPS 140-3, 2009, http://csrc.nist.gov/publications/drafts/fips140-3/revised-draft-fips140-3_PDF-zip_document-annexA-to-annexG.zip.
  24. NIST, Revised draft FIPS 800-90a, 2012, http://csrc.nist.gov/publications/nistpubs/800-90A/SP800-90A.pdf.
  25. G. Marsaglia, “DIEHARD: a battery of tests of randomness,” The preceding description of the DIEHARD executable program that explains the significance of the results, 1995, http://stat.fsu.edu/pub/diehard.
  26. “Logitech ClearChat Stereo Headset,” http://www.logitech.com/en-gb/speakers-audio/headphones/devices/349.
  27. Logitech QuickCam Pro 4000, http://www.logitech.com/en-gb/support/269?crid=405.
  28. BlueEyes’s IPCAM BE-1200, http://www.blueeyes.com.tw/EN/brochure/BE1200.pdf.
  29. W. H. Ho, J. H. Chou, and C. Y. Guo, “Parameter identification of chaotic systems using improved differential evolution algorithm,” Nonlinear Dynamics, vol. 61, no. 1-2, pp. 29–41, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  30. W. H. Ho and C. S. Chang, “Genetic-algorithm-based artificial neural network modeling for platelet transfusion requirements on acute myeloblastic leukemia patients,” Expert Systems with Applications, vol. 38, no. 5, pp. 6319–6323, 2011. View at Publisher · View at Google Scholar · View at Scopus