Table of Contents Author Guidelines Submit a Manuscript
Mathematical Problems in Engineering
Volume 2013 (2013), Article ID 316546, 10 pages
http://dx.doi.org/10.1155/2013/316546
Research Article

Brain MR Image Segmentation Based on an Adaptive Combination of Global and Local Fuzzy Energy

1School of Electronics and Information, Northwestern Polytechnical University, Xi’an 710072, China
2College of Science, China Three Gorges University, Yichang 443002, China
3School of Electronic and Information Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China

Received 17 May 2013; Accepted 19 October 2013

Academic Editor: Dane Quinn

Copyright © 2013 Wenchao Cui et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Z.-X. Ji, Q. Chen, Q.-S. Sun, D.-S. Xia, and P.-A. Heng, “MR image segmentation and bias field estimation using coherent local and global intensity clustering,” in Proceedings of the 7th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD '10), vol. 2, pp. 578–582, IEEE Press, August 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. U. Vovk, F. Pernuš, and B. Likar, “A review of methods for correction of intensity inhomogeneity in MRI,” IEEE Transactions on Medical Imaging, vol. 26, no. 3, pp. 405–421, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. S. Chen and D. Zhang, “Robust image segmentation using FCM with spatial constraints based on new kernel-induced distance measure,” IEEE Transactions on Systems, Man, and Cybernetics B, vol. 34, no. 4, pp. 1907–1916, 2004. View at Publisher · View at Google Scholar · View at Scopus
  4. D. L. Pham and J. L. Prince, “An adaptive fuzzy C-means algorithm for image segmentation in the presence of intensity inhomogeneities,” Pattern Recognition Letters, vol. 20, no. 1, pp. 57–68, 1999. View at Publisher · View at Google Scholar · View at Scopus
  5. M. N. Ahmed, S. M. Yamany, N. Mohamed, A. A. Farag, and T. Moriarty, “A modified fuzzy C-means algorithm for bias field estimation and segmentation of MRI data,” IEEE Transactions on Medical Imaging, vol. 21, no. 3, pp. 193–199, 2002. View at Publisher · View at Google Scholar · View at Scopus
  6. A. W.-C. Liew and H. Yan, “An adaptive spatial fuzzy clustering algorithm for 3-D MR image segmentation,” IEEE Transactions on Medical Imaging, vol. 22, no. 9, pp. 1063–1075, 2003. View at Publisher · View at Google Scholar · View at Scopus
  7. D.-Q. Zhang and S.-C. Chen, “A novel kernelized fuzzy C-means algorithm with application in medical image segmentation,” Artificial Intelligence in Medicine, vol. 32, no. 1, pp. 37–50, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. K. Chuang, H. Tzeng, S. Chen, J. Wu, and T. Chen, “Fuzzy c-means cluster­ing with spatial information for image segmentation,” Computerized Medical Imaging and Graphics, vol. 30, no. 1, pp. 9–15, 2006. View at Google Scholar
  9. C. Li, C. Xu, A. Anderson, and J. Gore, “MRI tissue classification and bias field estimation based on coherent local intensity clustering: a unified energy minimization framework,” in Proceedings of the 21st International Conference on Information Processing in Medical Imaging,, vol. 5636 of Lecture Notes in Computer Science, pp. 288–299, Springer, 2009.
  10. Z. Ji, Y. Xia, Q. Sun, Q. Chen, D. Xia, and D. Feng, “Fuzzy local Gaussian mixture model for brain MR image segmentation,” IEEE Transactions on Information Technology in Biomedicine, vol. 16, no. 3, pp. 339–347, 2012. View at Google Scholar
  11. L. Wang, L. He, A. Mishra, and C. Li, “Active contours driven by local Gaussian distribution fitting energy,” Signal Processing, vol. 89, no. 12, pp. 2435–2447, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. N. Paragios and R. Deriche, “Geodesic active regions and level set methods for supervised texture segmentation,” International Journal of Computer Vision, vol. 46, no. 3, pp. 223–247, 2002. View at Publisher · View at Google Scholar · View at Scopus
  13. C. Li, C.-Y. Kao, J. C. Gore, and Z. Ding, “Minimization of region-scalable fitting energy for image segmentation,” IEEE Transactions on Image Processing, vol. 17, no. 10, pp. 1940–1949, 2008. View at Publisher · View at Google Scholar · View at MathSciNet
  14. C. Li, R. Huang, Z. Ding, J. C. Gatenby, D. N. Metaxas, and J. C. Gore, “A level set method for image segmentation in the presence of intensity inhomogeneities with application to MRI,” IEEE Transactions on Image Processing, vol. 20, no. 7, pp. 2007–2016, 2011. View at Publisher · View at Google Scholar · View at MathSciNet
  15. Y. Chen, J. Zhang, and J. Macione, “An improved level set method for brain MR images segmentation and bias correction,” Computerized Medical Imaging and Graphics, vol. 33, no. 7, pp. 510–519, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. L. Wang, Y. Chen, X. Pan, X. Hong, and D. Xia, “Level set segmentation of brain magnetic resonance images based on local Gaussian distribution fitting energy,” Journal of Neuroscience Methods, vol. 188, no. 2, pp. 316–325, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. L. Wang, C. Li, Q. Sun, D. Xia, and C.-Y. Kao, “Active contours driven by local and global intensity fitting energy with application to brain MR image segmentation,” Computerized Medical Imaging and Graphics, vol. 33, no. 7, pp. 520–531, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. K.-K. Shyu, V.-T. Pham, T.-T. Tran, and P.-L. Lee, “Global and local fuzzy energy-based active contours for image segmentation,” Nonlinear Dynamics, vol. 67, no. 2, pp. 1559–1578, 2012. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  19. Y. Yu, C. Zhang, Y. Wei, and X. Li, “Active contour method combining local fitting energy and global fitting energy dynamically,” in Proceedings of the International Conference on Medical Biometrics, vol. 6165 of Lecture Notes in Computer Science, pp. 163–172, Springer, 2010.
  20. Y. Yang and B. Wu, “Convex image segmentation model based on local and global intensity fitting energy and split Bregman method,” Journal of Applied Mathematics, vol. 2012, Article ID 692589, 16 pages, 2012. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  21. B. Wu and Y. Yang, “Local- and global-statistics-based active contour model for image segmentation,” Mathematical Problems in Engineering, vol. 2012, Article ID 791958, 16 pages, 2012. View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  22. Y. Yang and B. Wu, “Split Bregman method for minimization of improved active contour model combining local and global information dynamically,” Journal of Mathematical Analysis and Applications, vol. 389, no. 1, pp. 351–366, 2012. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet