Table of Contents Author Guidelines Submit a Manuscript
Mathematical Problems in Engineering
Volume 2013, Article ID 398123, 12 pages
http://dx.doi.org/10.1155/2013/398123
Research Article

A Dynamic Intelligent Decision Approach to Dependency Modeling of Project Tasks in Complex Engineering System Optimization

1College of Computer Science & Information Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
2Institute of Systems Engineering, Huazhong University of Science and Technology, Wuhan, Hubei Province 430074, China

Received 2 January 2013; Revised 25 March 2013; Accepted 25 March 2013

Academic Editor: Reza Jazar

Copyright © 2013 Tinggui Chen and Renbin Xiao. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. J. Chen and L. Lin, “A project task coordination model for team organization in concurrent engineering,” Concurrent Engineering Research and Applications, vol. 10, no. 3, pp. 187–202, 2002. View at Publisher · View at Google Scholar · View at Scopus
  2. W. Guo, J. Cha, Y. Fang, and T. C. Woo, “Concurrent design: an algebraic perspective,” International Journal of Information Technology, vol. 1, no. 1, pp. 17–32, 1995. View at Google Scholar
  3. M. M. Tseng and J. Jiao, “A module identification approach to the electrical design of electronic products by clustering analysis of the design matrix,” Computers and Industrial Engineering, vol. 33, no. 1-2, pp. 229–233, 1997. View at Google Scholar · View at Scopus
  4. J. K. Gershenson, G. J. Prasad, and S. Allamneni, “Modular product design: a life-cycle view,” Society for Design and Process Science, vol. 3, no. 4, pp. 13–26, 1999. View at Google Scholar
  5. G. Brændeland, A. Refsdal, and K. Stølen, “Modular analysis and modelling of risk scenarios with dependencies,” Journal of Systems and Software, vol. 83, no. 10, pp. 1995–2013, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. J. P. Stinson, E. W. Davis, and B. M. Khumawala, “Multiple Resource-constrained scheduling using branch and bound,” AIIE Trans, vol. 10, no. 3, pp. 252–259, 1978. View at Google Scholar · View at Scopus
  7. N. Christofides, R. Álvarez-Valdés, and J. M. Tamarit, “Project scheduling with resource constraints: a branch and bound approach,” European Journal of Operational Research, vol. 29, no. 3, pp. 262–273, 1987. View at Publisher · View at Google Scholar · View at MathSciNet
  8. E. L. Demeulemeester and W. S. Herroelen, “A branch-and-bound procedure for the generalized resource-constrained project scheduling problem,” Management Science, vol. 38, no. 12, pp. 1803–1818, 1992. View at Google Scholar · View at Scopus
  9. M. Mori and C. C. Tseng, “A genetic algorithm for multi-mode resource constrained project scheduling problem,” European Journal of Operational Research, vol. 100, no. 1, pp. 134–141, 1997. View at Google Scholar · View at Scopus
  10. A. Drexl and J. Gruenewald, “Nonpreemptive multi-mode resource-constrained project scheduling,” IIE Transactions, vol. 25, no. 5, pp. 74–81, 1993. View at Google Scholar · View at Scopus
  11. N. Xu, S. A. McKee, L. K. Nozick, and R. Ufomata, “Augmenting priority rule heuristics with justification and rollout to solve the resource-constrained project scheduling problem,” Computers and Operations Research, vol. 35, no. 10, pp. 3284–3297, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. B. Jarboui, N. Damak, P. Siarry, and A. Rebai, “A combinatorial particle swarm optimization for solving multi-mode resource-constrained project scheduling problems,” Applied Mathematics and Computation, vol. 195, no. 1, pp. 299–308, 2008. View at Publisher · View at Google Scholar · View at MathSciNet
  13. C. Ju and T. Chen, “Simplifying multiproject scheduling problem based on design structure matrix and its solution by an improved aiNet algorithm,” Discrete Dynamics in Nature and Society, vol. 2012, Article ID 713740, 22 pages, 2012. View at Google Scholar · View at MathSciNet
  14. C. H. Chen, S. F. Ling, and W. Chen, “Project scheduling for collaborative product development using DSM,” International Journal of Project Management, vol. 21, no. 4, pp. 291–299, 2003. View at Publisher · View at Google Scholar · View at Scopus
  15. R. Xiao and T. Chen, “Research on design structure matrix and its applications in product development and innovation: an overview,” International Journal of Computer Applications in Technology, vol. 37, no. 3-4, pp. 218–229, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. H. Q. Wei, “Concurrent design process analysis and optimization for aluminum profile extrusion product development,” International Journal of Advanced Manufacturing Technology, vol. 33, no. 7-8, pp. 652–661, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. R. Xiao, T. Chen, and W. Chen, “A new approach to solving coupled task sets based on resource balance strategy in product development,” International Journal of Materials and Product Technology, vol. 39, no. 3-4, pp. 251–270, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. R. Xiao, T. Chen, and C. Ju, “Research on product development iterations based on feedback control theory in a dynamic environment,” International Journal of Innovative Computing, Information and Control, vol. 7, no. 5(B), pp. 2669–2688, 2011. View at Google Scholar · View at Scopus
  19. M. Danilovic and B. Sandkull, “The use of dependence structure matrix and domain mapping matrix in managing uncertainty in multiple project situations,” International Journal of Project Management, vol. 23, no. 3, pp. 193–203, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. J. C. Y. Su, S. J. Chen, and L. Lin, “A structured approach to measuring functional dependency and sequencing of coupled tasks in engineering design,” Computers and Industrial Engineering, vol. 45, no. 1, pp. 195–214, 2003. View at Publisher · View at Google Scholar · View at Scopus
  21. R. Thebeau, Knowledge Management of System Interfaces and Interactions for Product Development Process, Massachusetts Institute of Technology, Cambridge, Mass, USA, 2001.
  22. J. F. Gonçalves, J. J. M. Mendes, and M. G. C. Resende, “A genetic algorithm for the resource constrained multi-project scheduling problem,” European Journal of Operational Research, vol. 189, no. 3, pp. 1171–1190, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. R. S. Parpinelli and H. S. Lopes, “New inspirations in swarm intelligence: a survey,” International Journal of Bio-Inspired Computation, vol. 3, no. 1, pp. 1–16, 2011. View at Google Scholar
  24. Z. Zhang and Z. Feng, “Two-stage updating pheromone for invariant ant colony optimization algorithm,” Expert Systems with Applications, vol. 39, no. 1, pp. 706–712, 2012. View at Google Scholar
  25. R. B. Xiao and T. G. Chen, “Relations of swarm intelligence and artificial immune system,” International Journal of Bio-Inspired Computation, vol. 5, no. 1, pp. 35–51, 2013. View at Google Scholar
  26. R. B. Xiao, W. M. Chen, and T. G. Chen, “Modeling of ant colony's labor division for the multi-project scheduling problem and its solution by PSO,” Journal of Computational and Theoretical Nanoscience, vol. 9, no. 2, pp. 223–232, 2012. View at Google Scholar
  27. J. Upendar, C. P. Gupta, and G. K. Singh, “Modified PSO and wavelet transform-based fault classification on transmission systems,” International Journal of Bio-Inspired Computation, vol. 2, no. 6, pp. 395–403, 2010. View at Google Scholar
  28. Y. Liu and R. Xiao, “Optimal synthesis of mechanisms for path generation using refined numerical representation based model and AIS based searching method,” Journal of Mechanical Design, vol. 127, no. 4, pp. 688–691, 2005. View at Publisher · View at Google Scholar · View at Scopus
  29. D. Karaboga, “An idea based on honey bee swarm for numerical optimization,” Tech. Rep. TR06, Computer Engineering Department, Erciyes University, Kayseri, Turkey, 2005. View at Google Scholar
  30. R. Kolisch, A. Sprecher, and A. Drexl, “Characterization and generation of a general class of resource constrained project scheduling problems,” Management Science, vol. 41, no. 10, pp. 1693–1703, 1995. View at Google Scholar