Table of Contents Author Guidelines Submit a Manuscript
Mathematical Problems in Engineering
Volume 2013 (2013), Article ID 436701, 14 pages
Research Article

Scheduling Semiconductor Multihead Testers Using Metaheuristic Techniques Embedded with Lot-Specific and Configuration-Specific Information

1Department of Industrial Engineering and Engineering Management, National Tsing Hua University, Hsinchu 300, Taiwan
2Department of Business Administration and Graduate Institute of Logistics Management, National Dong Hwa University, Hualien 974, Taiwan

Received 16 August 2013; Revised 22 October 2013; Accepted 23 October 2013

Academic Editor: Chin-Chia Wu

Copyright © 2013 Yi-Feng Hung et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


In the semiconductor back-end manufacturing, the device test central processing unit (CPU) is most costly and is typically the bottleneck machine at the test plant. A multihead tester contains a CPU and several test heads, each of which can be connected to a handler that processes one lot of the same device. The residence time of a lot is closely related to the product mix on test heads, which increases the complexity of this problem. It is critical for the test scheduling problem to reduce CPU's idle time and to increase tester utilization. In this paper, a multihead tester scheduling problem is formulated as an identical parallel machine scheduling problem with the objective of minimizing makespan. A heuristic grouping method is developed to obtain a good initial solution in a short time. Three metaheuristic techniques, using lot-specific and configuration-specific information, are proposed to receive a near-optimum and are compared to traditional approaches. Computational experiments show that a tabu search with lot-specific information outperforms all other competing approaches.