Table of Contents Author Guidelines Submit a Manuscript
Mathematical Problems in Engineering
Volume 2013 (2013), Article ID 537268, 13 pages
http://dx.doi.org/10.1155/2013/537268
Research Article

A New Feature Selection Method for Hyperspectral Image Classification Based on Simulated Annealing Genetic Algorithm and Choquet Fuzzy Integral

College of Computer and Information Engineering, Hohai University, Nanjing 211100, China

Received 1 June 2013; Revised 14 September 2013; Accepted 15 September 2013

Academic Editor: Gianluca Ranzi

Copyright © 2013 Hongmin Gao et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. F. Melgani and L. Bruzzone, “Classification of hyperspectral remote sensing images with support vector machines,” IEEE Transactions on Geoscience and Remote Sensing, vol. 42, no. 8, pp. 1778–1790, 2004. View at Publisher · View at Google Scholar · View at Scopus
  2. I. T. Jolliffe, Principal Component Analysis, Springer Series in Statistics, Springer, New York, NY, USA, 1986. View at MathSciNet
  3. A. A. Green, M. Berman, P. Switzer, and M. D. Craig, “A transformation for ordering multispectral data in terms of imagequality with implications for noise removal,” IEEE Transactions on Geoscience and Remote Sensing, vol. 26, no. 1, pp. 65–74, 1988. View at Publisher · View at Google Scholar · View at Scopus
  4. G. Camps-Valls, L. Gómez-Chova, J. Calpe-Maravilla et al., “Robust support vector method for hyperspectral data classification and knowledge discovery,” IEEE Transactions on Geoscience and Remote Sensing, vol. 42, no. 7, pp. 1530–1542, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. P. Gurram and H. Kwon, “Contextual SVM using hilbert space embeddingfor hyperspectral classification,” IEEE Geoscience and Remote Sensing Letters, vol. 10, no. 5, pp. 1031–1035, 2013. View at Publisher · View at Google Scholar
  6. Z. Sun, C. Wang, H. Wang, and J. Li, “Learn multiple-kernel SVMs for domain adaptation in hyperspectral data,” IEEE Geoscience and Remote Sensing Letters, vol. 10, no. 5, pp. 1224–1228, 2013. View at Google Scholar
  7. B. Tso and P. Mather, Classification Methods For Remotely Sensed Data, CRC Press, New York, NY, USA, 2001.
  8. C. Yang, S. Liu, L. Bruzzone, R. Guan, and P. Du, “A feature-metric-based affinity propagation technique for feature selection in hyperspectral image classification,” IEEE Geoscience and Remote Sensing Letters, vol. 10, no. 5, pp. 1152–1156, 2013. View at Google Scholar
  9. W. Xia, B. Wang, and L. Zhang, “Band selection for hyperspectral imagery: a new approach based on complex networks,” IEEE Geoscience and Remote Sensing Letters, vol. 10, no. 5, pp. 1229–1233, 2013. View at Google Scholar
  10. S. Li, H. Wu, D. Wan, and J. Zhu, “An effective feature selection method for hyperspectral image classification based on genetic algorithm and support vector machine,” Knowledge-Based Systems, vol. 24, no. 1, pp. 40–48, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. M. Pal, “Hybrid genetic algorithm for feature selection with hyperspectral data,” Remote Sensing Letters, vol. 4, no. 7, pp. 619–628, 2013. View at Publisher · View at Google Scholar
  12. M. Cui, S. Prasad, W. Li, and L. M. Bruce, “Locality preserving genetic algorithms for spatial-spectral hyperspectral image classification,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 6, no. 3, pp. 1688–1697, 2013. View at Google Scholar
  13. M. Qinglin, “A gas outburst prediction algorithm based on Choquet fuzzy integral,” in Proceedings of the WRI Global Congress on Intelligent Systems (GCIS '09), pp. 3–7, May 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. Y. Zhang, M. D. Desai, J. Zhang, and M. Jin, “Adaptive subspace decomposition for hyperspectral data dimensionality reduction,” in Proceedings of the International Conference on Image Processing (ICIP '99), pp. 326–329, October 1999. View at Scopus
  15. J. Zhang, Y. Zhang, B. Zou, and T. Zhou, “Fusion classification of hyperspectral image based on adaptive subspace decomposition,” in Proceedings of the International Conference on Image Processing (ICIP '00), pp. 472–475, September 2000. View at Scopus
  16. F. Liang and W. H. Wong, “Evolutionary Monte Carlo: applications to Cp model sampling and change point problem,” Statistica Sinica, vol. 10, no. 2, pp. 317–342, 2000. View at Google Scholar · View at Scopus
  17. C. Wang, J. D. Hyman, A. Percus, and R. Caflisch, “Parallel tempering for the traveling salesman problem,” International Journal of Modern Physics C, vol. 20, no. 4, pp. 539–556, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. S. Auephanwiriyakul, J. M. Keller, and P. D. Gader, “Generalized Choquet fuzzy integral fusion,” Information Fusion, vol. 3, no. 1, pp. 69–85, 2002. View at Publisher · View at Google Scholar · View at Scopus
  19. N. Hao and G. J. Wang, “Double-null asymptotic additivity of generalized fuzzy valued Choquet integrals,” Sichuan Shifan Daxue Xuebao, vol. 30, no. 1, pp. 62–65, 2007. View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  20. Y. Tarabalka, M. Fauvel, J. Chanussot, and J. A. Benediktsson, “SVM- and MRF-based method for accurate classification of hyperspectral images,” IEEE Geoscience and Remote Sensing Letters, vol. 7, no. 4, pp. 736–740, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. H. B. Wang, Z. Chen, X. Wang, and Y. Ma, “Random finite sets based UPF-CPHD multi-object tracking,” Journal on Communications, vol. 33, no. 12, pp. 147–153, 2012. View at Google Scholar
  22. P. Du, K. Tan, and X. Xing, “Wavelet SVM in reproducing kernel hilbert space for hyperspectral remote sensing image classification,” Optics Communications, vol. 283, no. 24, pp. 4978–4984, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. C. Huang, K. Song, S. Kim et al., “Use of a dark object concept and support vector machines to automate forest cover change analysis,” Remote Sensing of Environment, vol. 112, no. 3, pp. 970–985, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. G. P. Tan, X. Y. Ni, X. Q. Liu, C. Y. Qu, and L. Y. Tang, “Real-time multicast with network coding in mobile ad-hoc networks,” Intelligent Automation and Soft Computing, vol. 18, no. 7, pp. 783–794, 2012. View at Google Scholar
  25. D. Tuia, F. Ratle, F. Pacifici, M. F. Kanevski, and W. J. Emery, “Active learning methods for remote sensing image classification,” IEEE Transactions on Geoscience and Remote Sensing, vol. 47, no. 7, pp. 2218–2232, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. J. Ham, Y. Chen, M. M. Crawford, and J. Ghosh, “Investigation of the random forest framework for classification of hyperspectral data,” IEEE Transactions on Geoscience and Remote Sensing, vol. 43, no. 3, pp. 492–501, 2005. View at Publisher · View at Google Scholar · View at Scopus
  27. B. Zhang, S. Li, X. Jia, L. Gao, and M. Peng, “Adaptive Markov random field approach for classification of hyperspectral imagery,” IEEE Geoscience and Remote Sensing Letters, vol. 8, no. 5, pp. 973–977, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. V. Tsagaris, V. Anastassopoulos, and G. A. Lampropoulos, “Fusion of hyperspectral data using segmented PCT for color representation and classification,” IEEE Transactions on Geoscience and Remote Sensing, vol. 43, no. 10, pp. 2365–2374, 2005. View at Publisher · View at Google Scholar · View at Scopus
  29. D. Ming, J. Luo, L. Li, and Z. Song, “Modified local variance based method for selecting the optimal spatial resolution of remote sensing image,” in Proceedings of the 18th International Conference on Geoinformatics (Geoinformatics '10), June 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. Y. Zhu, P. K. Varshney, and H. Chen, “Evaluation of ICA based fusion of hyperspectral images for color display,” in Proceedings of the 10th International Conference on Information Fusion (FUSION '07), July 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. Y. S. Zhao, “Methods on optimal bands selection in hyperspectral remote sensing data interpretation,” Journal of Graduate School, Academia Sinica, vol. 16, no. 2, pp. 153–161, 1999 (Chinese). View at Google Scholar