Table of Contents Author Guidelines Submit a Manuscript
Mathematical Problems in Engineering
Volume 2013, Article ID 643548, 15 pages
http://dx.doi.org/10.1155/2013/643548
Research Article

Study on Integrated Control of Vehicle Yaw and Rollover Stability Using Nonlinear Prediction Model

1School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
2Shanghai Motor Vehicle Inspection Center, Shanghai 201805, China
3China Automotive Technology & Research Center, Tianjin 300300, China

Received 4 February 2013; Revised 24 April 2013; Accepted 10 June 2013

Academic Editor: Pedro Ribeiro

Copyright © 2013 Jianyong Cao et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

This paper proposes the integrated controller of the yaw and rollover stability controls based on the prediction model. A nonlinear 3-DoF vehicle model with a piecewise linearization tire model is built up as the rollover predictive model, and its accuracy is verified by vehicle tests. A yaw stability controller and a rollover stability controller are proposed, respectively. Then coordinated control strategy is investigated for the integration of vehicle yaw and roll stability controls. The additional yaw torque and braking torque of each wheel are calculated. The unified command of valves is sent combined with ABS control algorithm. Virtual tests in CarSim are carried out, including slalom condition and double-lane change condition. Results indicate that the coordinated control algorithm improves vehicle yaw and roll stability effectively.