Table of Contents Author Guidelines Submit a Manuscript
Mathematical Problems in Engineering
Volume 2013 (2013), Article ID 659243, 7 pages
http://dx.doi.org/10.1155/2013/659243
Research Article

Processing of Instantaneous Angular Speed Signal for Detection of a Diesel Engine Failure

Faculty of Marine Engineering, Gdynia Maritime University, 81-87 Morska Street, 81-225 Gdynia, Poland

Received 20 February 2013; Accepted 3 April 2013

Academic Editor: Henryk Śniegocki

Copyright © 2013 Adam Charchalis and Mirosław Dereszewski. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. Johnsson, “Cylinder pressure reconstruction based on complex radial basis function networks from vibration and speed signals,” Mechanical Systems and Signal Processing, vol. 20, no. 8, pp. 1923–1940, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. J. Franco, M. A. Franchek, and K. Grigoriadis, “Real-time brake torque estimation for internal combustion engines,” Mechanical Systems and Signal Processing, vol. 22, no. 2, pp. 338–361, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. M. Geveci, A. W. Osburn, and M. A. Franchek, “An investigation of crankshaft oscillations for cylinder health diagnostics,” Mechanical Systems and Signal Processing, vol. 19, no. 5, pp. 1107–1134, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. K. Cupiał, M. Gruca, and J. Grzelka, “The relationship between the fluctuation of the indicated work, the fluctuation of the crankshaft Speer and the electric current from a generating set,” Journal of KONES Powertrain and Transport, vol. 13, no. 2, 2006. View at Google Scholar
  5. M. Desbazeille, R. B. Randall, F. Guillet, M. El Badaoui, and C. Hoisnard, “Model-based diagnosis of large diesel engines based on angular speed variations of the crankshaft,” Mechanical Systems and Signal Processing, vol. 24, no. 5, pp. 1529–1541, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. P. Charles, J. K. Sinha, F. Gu, L. Lidstone, and A. D. Ball, “Detecting the crankshaft torsional vibration of diesel engines for combustion related diagnosis,” Journal of Sound and Vibration, vol. 321, no. 3–5, pp. 1171–1185, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. S. H. Gawande, L. G. Navale, M. R. Nandgaonkar, D. S. Butala, and S. Kunamalla, “Detecting power imbalance in multi-cylinder inline diesel engine genset,” Journal of Electronic Science and Technology, vol. 8, no. 3, 2010. View at Google Scholar
  8. F. Gu, I. Yesilyurt, Y. Li, G. Harris, and A. Ball, “An investigation of the effects of measurement noise in the use of instantaneous angular speed for machine diagnosis,” Mechanical Systems and Signal Processing, vol. 20, no. 6, pp. 1444–1460, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. T. R. Lin, A. C. Tan, L. Ma J, and Mathew, “Estimating the loading condition of a diesel engine using instantaneous angular speed analysis,” in Proceedings of the 6th World Congress on Engineering Asset Management, Cincinatti, Ohio, USA, October 2011.
  10. M. Dereszewski, S. Polanowski, and A. Charchalis, “Analysis of diagnostics utility of torque and rotational Speer fluctuation of propulsion shaft of a vessel,” Journal of KONES Powertarain and Transport, vol. 18, no. 4, 2011. View at Google Scholar