Table of Contents Author Guidelines Submit a Manuscript
Mathematical Problems in Engineering
Volume 2013 (2013), Article ID 707953, 14 pages
Research Article

Quality-Related Process Monitoring Based on Total Kernel PLS Model and Its Industrial Application

1Key Laboratory for Advanced Control of Iron and Steel Process, School of Automation and Electrical Engineering, University of Science and Technology of Beijing, Beijing 100083, China
2Department of Automation, TNList, Tsinghua University, Beijing 100084, China

Received 5 October 2013; Accepted 31 October 2013

Academic Editor: Hui Zhang

Copyright © 2013 Kaixiang Peng et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Projection to latent structures (PLS) model has been widely used in quality-related process monitoring, as it can establish a mapping relationship between process variables and quality index variables. To enhance the adaptivity of PLS, kernel PLS (KPLS) as an advanced version has been proposed for nonlinear processes. In this paper, we discuss a new total kernel PLS (T-KPLS) for nonlinear quality-related process monitoring. The new model divides the input spaces into four parts instead of two parts in KPLS, where an individual subspace is responsible in predicting quality output, and two parts are utilized for monitoring the quality-related variations. In addition, fault detection policy is developed based on the T-KPLS model, which is more well suited for nonlinear quality-related process monitoring. In the case study, a nonlinear numerical case, the typical Tennessee Eastman Process (TEP) and a real industrial hot strip mill process (HSMP) are employed to access the utility of the present scheme.