Table of Contents Author Guidelines Submit a Manuscript
Mathematical Problems in Engineering
Volume 2013, Article ID 708935, 8 pages
Research Article

Reorientation of Asymmetric Rigid Body Using Two Controls

1Texas A&M University, College Station, TX 77843-3141, USA
2Chosun University, Gwangju 501-759, Republic of Korea

Received 9 May 2013; Accepted 25 July 2013

Academic Editor: Mufid Abudiab

Copyright © 2013 Donghoon Kim et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Most spacecrafts are designed to be maneuvered to achieve pointing goals. This is accomplished usually by designing a three-axis control system, which can achieve arbitrary maneuvers, where the goal is to repoint the spacecraft and match a desired angular velocity at the end of the maneuver. New control laws are required, however, if one of the three-axis control actuators fails. This paper explores suboptimal maneuver strategies when only two control torque inputs are available. To handle this underactuated system control problem, the three-axis maneuver strategy is transformed to two successive independent submaneuver strategies. The first maneuver is conducted on one of the available torque axes. Next, the second maneuver is conducted on the torque available plane using two available control torques. However, the resulting control law is more complicated than the general three-axis control law. This is because an optimal switch time needs to be found for determining the end time for the single-axis maneuver or the start time for the second maneuver. Numerical simulation results are presented that compare optimal maneuver strategies for both nominal and failed actuator cases.