Table of Contents Author Guidelines Submit a Manuscript
Mathematical Problems in Engineering
Volume 2013, Article ID 768018, 12 pages
http://dx.doi.org/10.1155/2013/768018
Research Article

Fault Diagnosis Method of Polymerization Kettle Equipment Based on Rough Sets and BP Neural Network

1College of Information Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
2School of Electronic and Information Engineering, University of Science & Technology Liaoning, Anshan 114044, China

Received 25 March 2013; Revised 27 June 2013; Accepted 2 July 2013

Academic Editor: Jyh-Horng Chou

Copyright © 2013 Shu-zhi Gao et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Z. Gao, J. S. Wang, and X. W. Gao, “Modeling and advanced control method of PVC polymerization process,” Journal of Process Control, vol. 23, no. 5, pp. 664–681, 2013. View at Google Scholar
  2. X. Zhang, J. Zhou, J. Guo, Q. Zou, and Z. Huang, “Vibrant fault diagnosis for hydroelectric generator units with a new combination of rough sets and support vector machine,” Expert Systems with Applications, vol. 39, no. 3, pp. 2621–2628, 2012. View at Publisher · View at Google Scholar · View at Scopus
  3. G. F. Bin, J. J. Gao, X. J. Li, and B. S. Dhillon, “Early fault diagnosis of rotating machinery based on wavelet packets—empirical mode decomposition feature extraction and neural network,” Mechanical Systems and Signal Processing, vol. 27, no. 1, pp. 696–711, 2012. View at Publisher · View at Google Scholar · View at Scopus
  4. C. Ma, X. Gu, and Y. Wang, “Fault diagnosis of power electronic system based on fault gradation and neural network group,” Neurocomputing, vol. 72, no. 13–15, pp. 2909–2914, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. C. Wang, J. Zhou, H. Qin, C. Li, and Y. Zhang, “Fault diagnosis based on pulse coupled neural network and probability neural network,” Expert Systems with Applications, vol. 38, no. 11, pp. 14307–14313, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. M. Demetgul, I. N. Tansel, and S. Taskin, “Fault diagnosis of pneumatic systems with artificial neural network algorithms,” Expert Systems with Applications, vol. 36, no. 7, pp. 10512–10519, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. D. Bhalla, R. K. Bansal, and H. O. Gupta, “Integrating AI based DGA fault diagnosis using Dempster-Shafer Theory,” International Journal of Electrical Power & Energy Systems, vol. 48, pp. 31–38, 2013. View at Google Scholar
  8. Z. Chenglin, S. Xuebin, S. Songlin, and J. Ting, “Fault diagnosis of sensor by chaos particle swarm optimization algorithm and support vector machine,” Expert Systems with Applications, vol. 38, no. 8, pp. 9908–9912, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. N. Li, R. Zhou, Q. Hu, and X. Liu, “Mechanical fault diagnosis based on redundant second generation wavelet packet transform, neighborhood rough set and support vector machine,” Mechanical Systems and Signal Processing, vol. 28, pp. 608–621, 2012. View at Publisher · View at Google Scholar · View at Scopus
  10. N. R. Sakthivel, V. Sugumaran, and B. B. Nair, “Comparison of decision tree-fuzzy and rough set-fuzzy methods for fault categorization of mono-block centrifugal pump,” Mechanical Systems and Signal Processing, vol. 24, no. 6, pp. 1887–1906, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. N. R. Sakthivel, V. Sugumaran, and B. B. Nair, “Automatic rule learning using roughset for fuzzy classifier in fault categorization of mono-block centrifugal pump,” Applied Soft Computing Journal, vol. 12, no. 1, pp. 196–203, 2012. View at Publisher · View at Google Scholar · View at Scopus
  12. J. S. Wang and Q. P. Guo, “D-FNN based soft-sensor modeling and migration reconfiguration of polymerizing process,” Applied Soft Computing, vol. 13, no. 4, pp. 1892–1901, 2013. View at Google Scholar
  13. Y. Yao and Y. Zhao, “Discernibility matrix simplification for constructing attribute reducts,” Information Sciences, vol. 179, no. 7, pp. 867–882, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  14. Y. Zhao, Y. Yao, and F. Luo, “Data analysis based on discernibility and indiscernibility,” Information Sciences, vol. 177, no. 22, pp. 4959–4976, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. H.-X. Li and X.-Z. Zhou, “Heuristic attribute reduction based on 0-1 discernibility matrix,” Journal of Central South University (Science and Technology), vol. 40, no. 1, pp. 304–308, 2009. View at Google Scholar · View at Scopus
  16. X. Hu and N. Cercone, “Learning in relational databases: a rough set approach,” Computational Intelligence, vol. 11, no. 2, pp. 323–338, 1995. View at Google Scholar · View at Scopus
  17. J. Qian, D. Q. Miao, Z. H. Zhang, and W. Li, “Hybrid approaches to attribute reduction based on indiscernibility and discernibility relation,” International Journal of Approximate Reasoning, vol. 52, no. 2, pp. 212–230, 2011. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  18. D.-Q. Yan, K.-Q. Li, and Z.-X. Chi, “Soft discernibility matrix and attribute reduction for information systems,” Journal on Communications, vol. 30, no. 8, pp. 45–50, 2009. View at Google Scholar · View at Scopus
  19. W. Xuanyin, L. Xiaoxiao, and L. Fushang, “Analysis on oscillation in electro-hydraulic regulating system of steam turbine and fault diagnosis based on PSOBP,” Expert Systems with Applications, vol. 37, no. 5, pp. 3887–3892, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. D. Ma, Y. Liang, X. Zhao, R. Guan, and X. Shi, “Multi-BP expert system for fault diagnosis of power system,” Engineering Applications of Artificial Intelligence, vol. 26, no. 3, pp. 937–944, 2013. View at Publisher · View at Google Scholar · View at Scopus