Table of Contents Author Guidelines Submit a Manuscript
Mathematical Problems in Engineering
Volume 2013, Article ID 819565, 11 pages
http://dx.doi.org/10.1155/2013/819565
Research Article

A Novel Fusion Scheme for Vision Aided Inertial Navigation of Aerial Vehicles

College of Mechatronics and Automation, National University of Defense Technology, Changsha 410073, China

Received 17 April 2013; Revised 12 August 2013; Accepted 19 August 2013

Academic Editor: Rafael Martinez-Guerra

Copyright © 2013 Ming Xiao et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Wang, M. Garratt, A. Lambert et al., “Integration of GPS/INS/vision sensors to navigate unmanned aerial vehicles,” in Proceedings of the International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, pp. 963–969, Calgary, Canada, August 2008.
  2. R. Beard, D. Kingston, M. Quigley et al., “Autonomous vehicle technologies for small fixed-wing UAVs,” Journal of Aerospace Computing, Information and Communication, pp. 92–108, 2005. View at Google Scholar · View at Scopus
  3. D. B. Kingston and R. W. Beard, “Real-time attitude and position estimation for small UAVs using low-cost sensors,” in Proceedings of the AIAA 3rd Unmanned Unlimited Technical Conference, Workshop and Exhibit, pp. 489–497, Chicago, Ill, USA, September 2004. View at Scopus
  4. W. Li and J. Wang, “Effective adaptive Kalman filter for MEMS-IMU/magnetometers integrated attitude and heading reference systems,” Journal of Navigation, vol. 66, no. 1, pp. 99–113, 2013. View at Publisher · View at Google Scholar
  5. F. M. Mirzaei and S. I. Roumeliotis, “A Kalman filter-based algorithm for IMU-camera calibration: observability analysis and performance evaluation,” IEEE Transactions on Robotics, vol. 24, no. 5, pp. 1143–1156, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. J. Zhang, W. Liu, and Y. Wu, “Novel technique for vision-based UAV navigation,” IEEE Transactions on Aerospace and Electronic Systems, vol. 47, no. 4, pp. 2731–2741, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. A. I. Mourikis and S. I. Roumeliotis, “A multi-state constraint Kalman filter for vision-aided inertial navigation,” in Proceedings of the IEEE International Conference on Robotics and Automation (ICRA '07), pp. 3565–3572, April 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. C. N. Taylor, M. J. Veth, J. F. Raquet, and M. M. Miller, “Comparison of two image and inertial sensor fusion techniques for navigation in unmapped environments,” IEEE Transactions on Aerospace and Electronic Systems, vol. 47, no. 2, pp. 946–958, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. M. Blösch, S. Weiss, D. Scaramuzza, and R. Siegwart, “Vision based MAV navigation in unknown and unstructured environments,” in Proceedings of the IEEE International Conference on Robotics and Automation (ICRA '10), pp. 21–28, May 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. N. Trawny, A. I. Mourikis, S. I. Roumeliotis, A. E. Johnson, and J. F. Montgomery, “Vision-aided inertial navigation for pin-point landing using observations of mapped landmarks,” Journal of Field Robotics, vol. 24, no. 5, pp. 357–378, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. L. D. Hostetler and R. D. Andreas, “Nonlinear Kalman filtering techniques for terrain-aided navigation,” IEEE Transactions on Automatic Control, vol. 28, no. 3, pp. 315–323, 1983. View at Publisher · View at Google Scholar · View at Scopus
  12. P.-J. Nordlund and F. Gustafsson, “Marginalized particle filter for accurate and reliable terrain-aided navigation,” IEEE Transactions on Aerospace and Electronic Systems, vol. 45, no. 4, pp. 1385–1399, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” International Journal of Computer Vision, vol. 60, no. 2, pp. 91–110, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, “Speeded-up robust features (SURF),” Computer Vision and Image Understanding, vol. 110, no. 3, pp. 346–359, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. E. Rosten, R. Porter, and T. Drummond, “Faster and better: a machine learning approach to corner detection,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 32, no. 1, pp. 105–119, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. S. Leutenegger, M. Chli, and R. Y. Siegwart, “BRISK: binary robust invariant scalable keypoints,” in Proceedings of the IEEE International Conference on Computer Vision (ICCV '11), pp. 2548–2555, November 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. B. Zitová and J. Flusser, “Image registration methods: a survey,” Image and Vision Computing, vol. 21, no. 11, pp. 977–1000, 2003. View at Publisher · View at Google Scholar · View at Scopus
  18. M. Deshmukh and U. Bhosle, “A survey of image registration,” International Journal of Image Processing, vol. 5, pp. 245–269, 2011. View at Google Scholar
  19. D.-J. Jwo and C.-N. Lai, “Unscented Kalman filter with nonlinear dynamic process modeling for GPS navigation,” GPS Solutions, vol. 12, no. 4, pp. 249–260, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. D. Titterton and J. Weston, Strapdown Inertial Navigation Technology, The Institution of Electronical Engineers, Reston, Va, USA, 2nd edition, 2004.
  21. M. G. Petovello, M. E. Cannon, and G. Lachapelle, “Kalman filter reliability analysis using different update strategies,” in Proceedings of the CASI Annual General Meeting, Montreal, Canada, April 2003.
  22. A. H. Mohamed and K. P. Schwarz, “Adaptive Kalman filtering for INS/GPS,” Journal of Geodesy, vol. 73, no. 4, pp. 193–203, 1999. View at Publisher · View at Google Scholar · View at Scopus
  23. B. J. Odelson, M. R. Rajamani, and J. B. Rawlings, “A new autocovariance least-squares method for estimating noise covariances,” Automatica, vol. 42, no. 2, pp. 303–308, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. T. Y. Um, J. G. Lee, S. T. Park, and C. G. Park, “Noise covariances estimation for systems with bias states,” IEEE Transactions on Aerospace and Electronic Systems, vol. 36, no. 1, pp. 226–233, 2000. View at Publisher · View at Google Scholar · View at Scopus
  25. R. K. Mehra, “On the identification of variances and adaptive Kalman filtering,” IEEE Transactions on Automatic Control, vol. 15, no. 2, pp. 175–184, 1970. View at Publisher · View at Google Scholar · View at Scopus
  26. U. M. Tae Yoon, J. Lee Gyu, S.-T. Park, and C. G. Park, “Noise covariances estimation for systems with bias states,” IEEE Transactions on Aerospace and Electronic Systems, vol. 36, no. 1, pp. 226–233, 2000. View at Publisher · View at Google Scholar · View at Scopus
  27. A. Almagbile, J. Wang, and W. Ding, “Evaluating the performances of adaptive Kalman filter methods in GPS/INS integration,” Journal of Global Positioning Systems, vol. 9, pp. 33–40, 2010. View at Google Scholar
  28. P. S. Maybeck, Stochastic Models, Estimation, and Control, Elsevier, 1982.