Table of Contents Author Guidelines Submit a Manuscript
Mathematical Problems in Engineering
Volume 2013, Article ID 873140, 12 pages
http://dx.doi.org/10.1155/2013/873140
Research Article

Leader-Following Consensus of Linear Multiagent Systems with State Observer under Switching Topologies

1Institute of Intelligent Systems and Decision, Wenzhou University, Zhejiang 325035, China
2Department of Control Science and Engineering, Zhejiang University, Hangzhou 310027, China
3State Key Laboratory of Industrial Control Technology, Institute of Industrial Process Control, Zhejiang University, Hangzhou 310027, China

Received 2 January 2013; Accepted 24 January 2013

Academic Editor: Yang Tang

Copyright © 2013 Lixin Gao et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. M. Murray, “Recent research in cooperative control of multivehicle systems,” Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, vol. 129, no. 5, pp. 571–583, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. W. Ren and R. W. Beard, Distributed Consensus in Multi-Vehicle Cooperative Control: Theory and Applications, Springer, Berlin, Germany, 2008.
  3. A. Jadbabaie, J. Lin, and A. S. Morse, “Coordination of groups of mobile autonomous agents using nearest neighbor rules,” IEEE Transactions on Automatic Control, vol. 48, no. 6, pp. 988–1001, 2003. View at Publisher · View at Google Scholar · View at MathSciNet
  4. W. Ren and R. W. Beard, “Consensus seeking in multiagent systems under dynamically changing interaction topologies,” IEEE Transactions on Automatic Control, vol. 50, no. 5, pp. 655–661, 2005. View at Publisher · View at Google Scholar · View at MathSciNet
  5. L. Gao, D. Cheng, and Y. Hong, “Control of group of mobile autonomous agents via local strategies,” Journal of Control Theory and Applications, vol. 6, no. 4, pp. 357–364, 2008. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  6. Z.-H. Guan, Y. Wu, and G. Feng, “Consensus analysis based on impulsive systems in multiagent networks,” IEEE Transactions on Circuits and Systems. I. Regular Papers, vol. 59, no. 1, pp. 170–178, 2012. View at Publisher · View at Google Scholar · View at MathSciNet
  7. R. Olfati-Saber and R. M. Murray, “Consensus problems in networks of agents with switching topology and time-delays,” IEEE Transactions on Automatic Control, vol. 49, no. 9, pp. 1520–1533, 2004. View at Publisher · View at Google Scholar · View at MathSciNet
  8. Z. Lin, M. Broucke, and B. Francis, “Local control strategies for groups of mobile autonomous agents,” IEEE Transactions on Automatic Control, vol. 49, no. 4, pp. 622–629, 2004. View at Publisher · View at Google Scholar · View at MathSciNet
  9. Y. Cao and W. Ren, “Sampled-data discrete-time coordination algorithms for double-integrator dynamics under dynamic directed interaction,” International Journal of Control, vol. 83, no. 3, pp. 506–515, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  10. Y. Hong, J. Hu, and L. Gao, “Tracking control for multi-agent consensus with an active leader and variable topology,” Automatica, vol. 42, no. 7, pp. 1177–1182, 2006. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  11. J. Hu and Y. Hong, “Leader-following coordination of multi-agent systems with coupling time delays,” Physica A, vol. 374, no. 2, pp. 853–863, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. Y. Hong, G. Chen, and L. Bushnell, “Distributed observers design for leader-following control of multi-agent networks,” Automatica, vol. 44, no. 3, pp. 846–850, 2008. View at Publisher · View at Google Scholar · View at MathSciNet
  13. L. Gao, J. Zhang, and W. Chen, “Second-order consensus for multiagent systems under directed and switching topologies,” Mathematical Problems in Engineering, vol. 2012, Article ID 273140, 21 pages, 2012. View at Publisher · View at Google Scholar · View at MathSciNet
  14. F. Xiao and L. Wang, “Consensus problems for high-dimensional multi-agent systems,” IET Control Theory and Applications, vol. 1, no. 3, pp. 830–837, 2007. View at Google Scholar
  15. W. Yu, G. Chen, and M. Cao, “Some necessary and sufficient conditions for second-order consensus in multi-agent dynamical systems,” Automatica, vol. 46, no. 6, pp. 1089–1095, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  16. K. Peng and Y. Yang, “Leader-following consensus problem with a varying-velocity leader and time-varying delays,” Physica A, vol. 388, no. 2-3, pp. 193–208, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. L. Gao, X. Zhu, and W. Chen, “Leader-following consensus problem with an accelerated motion leader,” International Journal of Control, Automation, and Systems, vol. 10, no. 5, pp. 931–939, 2012. View at Google Scholar
  18. V. Ugrinovskii, “Distributed robust filtering with H consensus of estimates,” Automatica, vol. 47, no. 1, pp. 1–13, 2011. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  19. Y. Tang, H. Gao, W. Zou, and J. Kurths, “Distributed synchronization in networks of agent systems with nonlinearities and random switchings,” IEEE Transactions on Systems, Man, and Cybernetics, Part B, vol. 43, pp. 358–370, 2013. View at Google Scholar
  20. Y. Tang and W. K. Wong, “Distributed synchronization of coupled neural networks via randomly occurring control,” IEEE Transactions on Neural Networks and Learning Systems, vol. 24, no. 3, pp. 435–447, 2013. View at Publisher · View at Google Scholar
  21. D. Jin and L. Gao, “Stability analysis of a double integrator swarm model related to position and velocity,” Transactions of the Institute of Measurement and Control, vol. 30, no. 3-4, pp. 275–293, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. N. Cai, J.-X. Xi, and Y.-S. Zhong, “Swarm stability of high-order linear time-invariant swarm systems,” IET Control Theory & Applications, vol. 5, no. 2, pp. 402–408, 2011. View at Publisher · View at Google Scholar · View at MathSciNet
  23. W. Zhang, Y. Tang, J. Fang, and X. Wu, “Stability of delayed neural networks with time-varying impulses,” Neural Networks, vol. 36, pp. 59–63, 2012. View at Google Scholar
  24. L. Gao, Y. Tang, W. Chen, and H. Zhang, “Consensus seeking in multi-agent systems with an active leader and communication delays,” Kybernetika, vol. 47, no. 5, pp. 773–789, 2011. View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  25. S. Li, H. Du, and X. Lin, “Finite-time consensus algorithm for multi-agent systems with double-integrator dynamics,” Automatica, vol. 47, no. 8, pp. 1706–1712, 2011. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  26. G. Wen, Z. Duan, W. Yu, and G. Chen, “Consensus in multi-agent systems with communication constraints,” International Journal of Robust and Nonlinear Control, vol. 22, no. 2, pp. 170–182, 2012. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  27. D. Hammel, “Formation flight as an energy saving mechanism,” Israel Journal of Zool, vol. 41, pp. 261–278, 1995. View at Google Scholar
  28. M. Andersson and J. Wallander, “Kin selection and reciprocity in flight formation,” Behavioral Ecology, vol. 15, no. 1, pp. 158–162, 2004. View at Google Scholar
  29. B. Liu, T. Chu, L. Wang, and G. Xie, “Controllability of a leader-follower dynamic network with switching topology,” IEEE Transactions on Automatic Control, vol. 53, no. 4, pp. 1009–1013, 2008. View at Publisher · View at Google Scholar · View at MathSciNet
  30. W. Ni and D. Cheng, “Leader-following consensus of multi-agent systems under fixed and switching topologies,” Systems & Control Letters, vol. 59, no. 3-4, pp. 209–217, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  31. E. Tian, D. Yue, and C. Peng, “Quantized output feedback control for networked control systems,” Information Sciences, vol. 178, no. 12, pp. 2734–2749, 2008. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  32. A. Abdessameud and A. Tayebi, “On consensus algorithms for double-integrator dynamics without velocity measurements and with input constraints,” Systems & Control Letters, vol. 59, no. 12, pp. 812–821, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  33. W. Dong, “Distributed observer-based cooperative control of multiple nonholonomic mobile agents,” International Journal of Systems Science, vol. 43, no. 5, pp. 797–808, 2012. View at Publisher · View at Google Scholar · View at MathSciNet
  34. Y. Hong and X. Wang, “Multi-agent tracking of a high-dimensional active leader with switching topology,” Journal of Systems Science & Complexity, vol. 22, no. 4, pp. 722–731, 2009. View at Publisher · View at Google Scholar · View at MathSciNet
  35. J. H. Seo, H. Shim, and J. Back, “Consensus of high-order linear systems using dynamic output feedback compensator: low gain approach,” Automatica, vol. 45, no. 11, pp. 2659–2664, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  36. Z. Li, Z. Duan, and G. Chen, “Dynamic consensus of linear multi-agent systems,” IET Control Theory & Applications, vol. 5, no. 1, pp. 19–28, 2011. View at Publisher · View at Google Scholar · View at MathSciNet
  37. Z. Li, Z. Duan, G. Chen, and L. Huang, “Consensus of multiagent systems and synchronization of complex networks: a unified viewpoint,” IEEE Transactions on Circuits and Systems. I. Regular Papers, vol. 57, no. 1, pp. 213–224, 2010. View at Publisher · View at Google Scholar · View at MathSciNet
  38. G. Wen, Z. Li, Z. Duan, and G. Chen, “Distributed consensus control for linear multi-agent systems with discontinuous observations,” International Journal of Control, vol. 86, no. 1, pp. 95–106, 2013. View at Google Scholar
  39. C. Godsil and G. Royle, Algebraic Graph Theory, vol. 207, Springer, New York, NY, USA, 2001. View at Publisher · View at Google Scholar · View at MathSciNet
  40. R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University Press, New York, NY, USA, 1985. View at MathSciNet
  41. W. M. Wonham, Linear Multivariable Contol, vol. 10, Springer, New York, NY, USA, 1985. View at MathSciNet
  42. C. T. Chen, Linear System Theory and Design, Oxford University Press, New York, NY, USA, 3rd edition, 1999.