Table of Contents Author Guidelines Submit a Manuscript
Mathematical Problems in Engineering
Volume 2013, Article ID 895640, 10 pages
http://dx.doi.org/10.1155/2013/895640
Research Article

Fractional-Order Generalized Predictive Control: Application for Low-Speed Control of Gasoline-Propelled Cars

1Escuela Técnica Superior de Ingeniería Informática, UNED, Juan del Rosal, 16, 28040 Madrid, Spain
2California PATH, University of California at Berkeley, Richmond, CA 94804-4698, USA
3Industrial Engineering School, University of Extremadura, Avenida de Elvas s/n, 06071 Badajoz, Spain

Received 9 November 2012; Accepted 22 January 2013

Academic Editor: Clara Ionescu

Copyright © 2013 M. Romero et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

There is an increasing interest in using fractional calculus applied to control theory generalizing classical control strategies as the PID controller and developing new ones with the intention of taking advantage of characteristics supplied by this mathematical tool for the controller definition. In this work, the fractional generalization of the successful and spread control strategy known as model predictive control is applied to drive autonomously a gasoline-propelled vehicle at low speeds. The vehicle is a Citroën C3 Pluriel that was modified to act over the throttle and brake pedals. Its highly nonlinear dynamics are an excellent test bed for applying beneficial characteristics of fractional predictive formulation to compensate unmodeled dynamics and external disturbances.