Table of Contents Author Guidelines Submit a Manuscript
Mathematical Problems in Engineering
Volume 2013 (2013), Article ID 914653, 15 pages
Research Article

Design, Dynamics, and Workspace of a Hybrid-Driven-Based Cable Parallel Manipulator

1School of Mechanical and Electrical Engineering, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China
2Chair of Mechanics and Robotics, University of Duisburg-Essen, 47057 Duisburg, Germany
3G-SCOP Laboratory, Grenoble-INP/UJF-Grenoble 1/CNRS, 46 Avenue Félix Viallet, 38031 Grenoble Cedex 1, France

Received 8 September 2012; Revised 9 December 2012; Accepted 27 December 2012

Academic Editor: G. Rega

Copyright © 2013 Bin Zi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


The design, dynamics, and workspace of a hybrid-driven-based cable parallel manipulator (HDCPM) are presented. The HDCPM is able to perform high efficiency, heavy load, and high-performance motion due to the advantages of both the cable parallel manipulator and the hybrid-driven planar five-bar mechanism. The design is performed according to theories of mechanism structure synthesis for cable parallel manipulators. The dynamic formulation of the HDCPM is established on the basis of Newton-Euler method. The workspace of the manipulator is analyzed additionally. As an example, a completely restrained HDCPM with 3 degrees of freedom is studied in simulation in order to verify the validity of the proposed design, workspace, and dynamic analysis. The simulation results, compared with the theoretical analysis, and the case study previously performed show that the manipulator design is reasonable and the mathematical models are correct, which provides the theoretical basis for future physical prototype and control system design.