Table of Contents Author Guidelines Submit a Manuscript
Mathematical Problems in Engineering
Volume 2013 (2013), Article ID 974862, 19 pages
http://dx.doi.org/10.1155/2013/974862
Research Article

Simultaneous-Fault Diagnosis of Automotive Engine Ignition Systems Using Prior Domain Knowledge and Relevance Vector Machine

1Department of Computer and Information Science, University of Macau, Taipa, Macau
2Department of Electromechanical Engineering, University of Macau, Taipa, Macau
3Faculty of Science and Technology, University of Macau, Macau

Received 30 November 2012; Accepted 12 December 2012

Academic Editor: Qingsong Xu

Copyright © 2013 Chi-Man Vong et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. M. Vong and P. K. Wong, “Engine ignition signal diagnosis with Wavelet Packet Transform and Multi-class Least Squares Support Vector Machines,” Expert Systems with Applications, vol. 38, no. 7, pp. 8563–8570, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. W. H. Crouse and D. L. Anglin, Automotive Mechanics, McGraw-Hill, Columbus, Ohio, USA, 1993.
  3. C. C. Liu and J. Chu, Wave Analysis and Inspection Technology for Computer Controlled Automotive Engine, Sunlex, Guangzhou, China, 2005.
  4. C. M. Vong, P. K. Wong, L. M. Tam, and Z. Zhang, “Ignition pattern analysis for automotive engine trouble diagnosis using wavelet packet transform and support vector machines,” Chinese Journal of Mechanical Engineering, vol. 24, no. 5, p. 870, 2011. View at Publisher · View at Google Scholar
  5. Y. Wang, Y. Xing, and H. He, “An intelligent approach for engine fault diagnosis based on wavelet pre-processing neural network model,” in Proceedings of IEEE International Conference on Information and Automation (ICIA '10), pp. 576–581, June 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. A. Widodo, E. Y. Kim, J. D. Son et al., “Fault diagnosis of low speed bearing based on relevance vector machine and support vector machine,” Expert Systems with Applications, vol. 36, no. 3, part 2, pp. 7252–7261, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. A. Widodo and B. S. Yang, “Application of nonlinear feature extraction and support vector machines for fault diagnosis of induction motors,” Expert Systems with Applications, vol. 33, no. 1, pp. 241–250, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. N. Saravanan, V. N. S. K. Siddabattuni, and K. I. Ramachandran, “Fault diagnosis of spur bevel gear box using artificial neural network (ANN), and proximal support vector machine (PSVM),” Applied Soft Computing Journal, vol. 10, no. 1, pp. 344–360, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. C. M. Vong, P. K. Wong, and W. F. Ip, “Support vector classification using domain knowledge and extracted pattern features for diagnosis of engine ignition systems,” Journal of the Chinese Society of Mechanical Engineers, vol. 31, no. 5, pp. 363–374, 2010. View at Google Scholar
  10. V. K. Rai and A. R. Mohanty, “Bearing fault diagnosis using FFT of intrinsic mode functions in Hilbert-Huang transform,” Mechanical Systems and Signal Processing, vol. 21, no. 6, pp. 2607–2615, 2007. View at Publisher · View at Google Scholar
  11. G. Betta, C. Liguori, A. Paolillo, and A. Pietrosanto, “A DSP-based FFT-analyzer for the fault diagnosis of rotating machine based on vibration analysis,” IEEE Transactions on Instrumentation and Measurement, vol. 51, no. 6, pp. 1316–1321, 2002. View at Publisher · View at Google Scholar · View at Scopus
  12. Y. Liu, L. Guo, Q. Wang, G. An, M. Guo, and H. Lian, “Application to induction motor faults diagnosis of the amplitude recovery method combined with FFT,” Mechanical Systems and Signal Processing, vol. 24, no. 8, pp. 2961–2971, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. J. F. Li and C. W. Wu, “Efficient FFT network testing and diagnosis schemes,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 10, no. 3, pp. 267–277, 2002. View at Publisher · View at Google Scholar · View at Scopus
  14. J. D. Wu and C. H. Liu, “An expert system for fault diagnosis in internal combustion engines using wavelet packet transform and neural network,” Expert Systems with Applications, vol. 36, no. 3, pp. 4278–4286, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. R. Yan and R. X. Gao, “An efficient approach to machine health diagnosis based on harmonic wavelet packet transform,” Robotics and Computer-Integrated Manufacturing, vol. 21, no. 4-5, pp. 291–301, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. R. Zhou, W. Bao, N. Li, X. Huang, and D. R. Yu, “Mechanical equipment fault diagnosis based on redundant second generation wavelet packet transform,” Digital Signal Processing, vol. 20, no. 1, pp. 276–288, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. C. M. Vong, P. K. Wong, and W. F. Ip, “Case-based expert system using wavelet packet transform and kernel-based feature manipulation for engine ignition system diagnosis,” Engineering Applications of Artificial Intelligence, vol. 24, no. 7, pp. 1281–1294, 2011. View at Publisher · View at Google Scholar
  18. C. M. Vong, H. Huang, and P. K. Wong, “Engine spark ignition diagnosis with wavelet packet transform and case-based reasoning,” in Proceedings of IEEE International Conference on Information and Automation (ICIA '10), pp. 565–570, June 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. C. M. Vong, P. K. Wong, and W. F. Ip, “Case-based expert system using wavelet packet transform and kernel-based feature manipulation for engine ignition system diagnosis,” Engineering Applications of Artificial Intelligence, vol. 24, no. 7, pp. 1281–1294, 2011. View at Publisher · View at Google Scholar
  20. L. H. Chiang, E. L. Russell, and R. D. Braatz, “Fault diagnosis in chemical processes using Fisher discriminant analysis, discriminant partial least squares, and principal component analysis,” Chemometrics and Intelligent Laboratory Systems, vol. 50, no. 2, pp. 243–252, 2000. View at Publisher · View at Google Scholar · View at Scopus
  21. S. Wang and F. Xiao, “AHU sensor fault diagnosis using principal component analysis method,” Energy and Buildings, vol. 36, no. 2, pp. 147–160, 2004. View at Publisher · View at Google Scholar
  22. K. Polat and S. Güneş, “An expert system approach based on principal component analysis and adaptive neuro-fuzzy inference system to diagnosis of diabetes disease,” Digital Signal Processing, vol. 17, no. 4, pp. 702–710, 2007. View at Publisher · View at Google Scholar
  23. I. Yélamos, M. Graells, L. Puigjaner, and G. Escudero, “Simultaneous fault diagnosis in chemical plants using a multilabel approach,” AIChE Journal, vol. 53, no. 11, pp. 2871–2884, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. P. M. Ciarelli, E. Oliveira, C. Badue, and A. F. de Souza, “Multi-label text categorization using a probabilistic neural network,” International Journal of Computer Information Systems and Industrial Management Applications, vol. 1, pp. 133–144, 2009. View at Google Scholar
  25. P. Refregier and F. Vallet, “Probabilistic approach for multiclass classification with neural networks,” in Proceedings of International Conference on Artificial Networks, pp. 1003–1007, 1991.
  26. P. K. Wong, Q. S. Xu, C. M. Vong, and H. C. Wong, “Rate-dependent hysteresis modeling and control of a piezostage using online support vector machine and relevance vector machine,” IEEE Transactions on Industrial Electronics, vol. 59, no. 4, pp. 1988–2001, 2012. View at Google Scholar
  27. M. E. Tipping, “Sparse Bayesian learning and the relevance vector machine,” Journal of Machine Learning Research, vol. 1, no. 3, pp. 211–244, 2001. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  28. T.-F. Wu, C.-J. Lin, and R. C. Weng, “Probability estimates for multi-class classification by pairwise coupling,” Journal of Machine Learning Research, vol. 5, pp. 975–1005, 2004. View at Google Scholar · View at MathSciNet
  29. S. Abe, Support Vector Machines for Pattern Classification, Advances in Pattern Recognition, Springer, London, UK, 2nd edition, 2010. View at Publisher · View at Google Scholar · View at MathSciNet
  30. E. O. Brigham and R. E. Morrow, “The fast Fourier transform,” IEEE Spectrum, vol. 4, no. 12, pp. 63–70, 1967. View at Google Scholar
  31. Z. Sun and C. Chang, “Structural damage assessment based on wavelet packet transform,” Journal of Structural Engineering, vol. 128, no. 10, pp. 1354–1361, 2002. View at Publisher · View at Google Scholar
  32. D. J. C. MacKay, “The evidence framework applied to classification networks,” Neural Computation, vol. 4, no. 5, pp. 720–736, 1992. View at Publisher · View at Google Scholar
  33. K.-B. Duan and S. S. Keerthi, “Which is the best multiclass SVM method? An empirical study,” in Multiple Classifier Systems, N. Oza, R. Polikar, J. Kittler, and F. Roli, Eds., vol. 3541, pp. 278–285, Springer, Berlin, Germany, 2005. View at Google Scholar
  34. M. Hülsmann and C. Friedrich, “Comparison of a novel combined ECOC strategy with different multiclass algorithms together with parameter optimization methods,” in Machine Learning and Data Mining in Pattern Recognition, P. Perner, Ed., vol. 4571, pp. 17–31, Springer, Berlin, Germany, 2007. View at Google Scholar
  35. R. Alguliev and R. Aliguliyev, “Experimental investigating the F-measure as similarity measure for automatic text summarization,” Applied and Computational Mathematics, vol. 6, no. 2, pp. 278–287, 2007. View at Google Scholar
  36. P. K. Wong, L. M. Tam, K. Li, and C. M. Vong, “Engine idle-speed system modelling and control optimization using artificial intelligence,” Proceedings of the Institution of Mechanical Engineers D: Journal of Automobile Engineering, vol. 224, no. 1, pp. 55–72, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. S. W. Lin, T. Y. Tseng, S. Y. Chou, and S. C. Chen, “A simulated-annealing-based approach for simultaneous parameter optimization and feature selection of back-propagation networks,” Expert Systems with Applications, vol. 34, no. 2, pp. 1491–1499, 2008. View at Publisher · View at Google Scholar · View at Scopus