Table of Contents Author Guidelines Submit a Manuscript
Mathematical Problems in Engineering
Volume 2014, Article ID 368602, 10 pages
http://dx.doi.org/10.1155/2014/368602
Research Article

Dictionary-Based Image Denoising by Fused-Lasso Atom Selection

1School of Computer Science and Technology, Harbin University of Science and Technology, Harbin 150080, China
2Graduate School of Informatics and Engineering, University of Electro-Communications, Tokyo 182-8585, Japan

Received 7 May 2014; Revised 12 August 2014; Accepted 13 August 2014; Published 28 August 2014

Academic Editor: Carla Roque

Copyright © 2014 Ao Li and Hayaru Shouno. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. X. Jiangtao, W. Lei, and S. Zaifeng, “A switching weighted vector median filter based on edge detection,” Signal Processing, vol. 98, pp. 359–369, 2014. View at Google Scholar
  2. D. L. Lau and J. G. Gonzalez, “Closest-to-mean filter: an edge preserving smoother for Gaussian environments,” in Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP '97), vol. 4, pp. 2593–2596, April 1997. View at Scopus
  3. J. Starck, E. J. Candes, and D. L. Donoho, “The curvelet transform for image denoising,” IEEE Transactions on Image Processing, vol. 11, no. 6, pp. 670–684, 2002. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  4. G. Y. Chen and B. Kégl, “Image denoising with complex ridgelets,” Pattern Recognition, vol. 40, no. 2, pp. 578–585, 2007. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  5. M. N. Do and M. Vetterli, “The contourlet transform: an efficient directional multiresolution image representation,” IEEE Transactions on Image Processing, vol. 14, no. 12, pp. 2091–2106, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. M. Aharon, M. Elad, and A. Bruckstein, “K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation,” IEEE Transactions on Signal Processing, vol. 54, no. 11, pp. 4311–4322, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. A. Foi, V. Katkovnik, and K. Egiazarian, “Pointwise shape-adaptive DCT for high-quality denoising and deblocking of grayscale and color images,” IEEE Transactions on Image Processing, vol. 16, no. 5, pp. 1395–1411, 2007. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  8. C. Bao, J. Cai, and H. Ji, “Fast sparsity -based orthogonal dictionary learning for image restoration,” in IEEE International Conference on Computer Vision, pp. 3384–3319, 2013.
  9. L. Zhang, W. Dong, D. Zhang, and G. Shi, “Two-stage image denoising by principal component analysis with local pixel grouping,” Pattern Recognition, vol. 43, no. 4, pp. 1531–1549, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  10. L. Yaroslavsky, Digital Picture Processing: An Introduction, Springer, Berlin, Germany, 1985.
  11. X. Zhang, G. Hou, J. Ma et al., “Denoising MR images using non-local means filter with combined patch and pixel similarity,” Plos ONE, vol. 9, no. 6, pp. 1–12, 2014. View at Google Scholar
  12. J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman, “Non-local sparse models for image restoration,” in Proceedings of the 12th International Conference on Computer Vision (ICCV '09), pp. 2272–2279, October 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image denoising by sparse 3-D transform-domain collaborative filtering,” IEEE Transactions on Image Processing, vol. 16, no. 8, pp. 2080–2095, 2007. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  14. H. Takeda, S. Farsiu, and P. Milanfar, “Kernel regression for image processing and reconstruction,” IEEE Transactions on Image Processing, vol. 16, no. 2, pp. 349–366, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. C. Tomasi and R. Manduchi, “Bilateral filtering for gray and color images,” in Proceedings of the IEEE 6th International Conference on Computer Vision, pp. 839–846, Washington, DC, USA, January 1998. View at Scopus
  16. A. Buades, B. Coll, and J. M. Morel, “A review of image denoising algorithms, with a new one,” Multiscale Modeling & Simulation, vol. 4, no. 2, pp. 490–530, 2005. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  17. Y. Zhan, M. Ding, L. Wu, and X. Zhang, “Nonlocal means method using weight refining for despeckling of ultrasound images,” Signal Processing, vol. 103, pp. 201–213, 2014. View at Publisher · View at Google Scholar
  18. H. Takeda, S. Farsiu, and P. Milanfar, “Deblurring using regularized locally adaptive kernel regression,” IEEE Transactions on Image Processing, vol. 17, no. 4, pp. 550–563, 2008. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  19. P. Yee and S. Haykin, “Pattern classification as an ill-posed, inverse problem: a regularization approach,” in Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP '93), vol. 1, pp. 597–600, April 1993. View at Scopus
  20. M. P. Wand and M. C. Jones, Kernel Smoothing, ser. Monographs on Statistics and Applied Probability, Chapman and Hall, New York, NY, USA, 1995. View at Publisher · View at Google Scholar · View at MathSciNet
  21. R. Tibshirani, M. Saunders, S. Rosset, J. Zhu, and K. Knight, “Sparsity and smoothness via the fused lasso,” Journal of the Royal Statistical Society B: Statistical Methodology, vol. 67, no. 1, pp. 91–108, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. J. Friedman, T. Hastie, H. Hofling, and R. Tibshirani, “Pathwise coordinate optimization,” The Annals of Applied Statistics, vol. 1, no. 2, pp. 302–332, 2007. View at Publisher · View at Google Scholar · View at MathSciNet
  23. H. Gao and H. Zhao, “Multilevel bioluminescence tomography based on radiative transfer equation part 1: 11 regularization,” Optics Express, vol. 18, no. 3, pp. 1854–1871, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. S. Osher, M. Burger, D. Goldfarb, J. Xu, and W. Yin, “An iterative regularization method for total variation-based image restoration,” Multiscale Modeling & Simulation, vol. 4, no. 2, pp. 460–489, 2005. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  25. S. Osher, Y. Mao, B. Dong, and W. Yin, “Fast linearized Bregman iteration for compressive sensing and sparse denoising,” Communications in Mathematical Sciences, vol. 8, no. 1, pp. 93–111, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  26. T. Goldstein and S. Osher, “The split Bregman method for L1-regularized problems,” SIAM Journal on Imaging Sciences, vol. 2, no. 2, pp. 323–343, 2009. View at Publisher · View at Google Scholar · View at MathSciNet
  27. A. Li, Y. Li, X. Yang, and Y. Liu, “Image restoration with dual-prior constraint models based on Split Bregman,” Optical Review, vol. 20, no. 6, pp. 491–195, 2013. View at Publisher · View at Google Scholar
  28. E. Esser, “Applications of lagrangian-based alternating direction methods and connections to split Bregman,” CAM Report, UCLA, 2009. View at Google Scholar
  29. J. Eckstein and D. P. Bertsekas, “On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators,” Mathematical Programming, vol. 55, no. 1, pp. 293–318, 1992. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  30. A. Beck and M. Teboulle, “Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems,” IEEE Transactions on Image Processing, vol. 18, no. 11, pp. 2419–2434, 2009. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus