Table of Contents Author Guidelines Submit a Manuscript
Mathematical Problems in Engineering
Volume 2014 (2014), Article ID 434972, 7 pages
http://dx.doi.org/10.1155/2014/434972
Research Article

An Adaptive Particle Swarm Optimization Algorithm Based on Directed Weighted Complex Network

School of Computer and Communication, LanZhou University of Technology, Lanzhou 730050, China

Received 12 November 2013; Revised 22 January 2014; Accepted 21 February 2014; Published 2 April 2014

Academic Editor: Ge Guo

Copyright © 2014 Ming Li et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceedings of the 1995 IEEE International Conference on Neural Networks, pp. 1942–1948, December 1995. View at Scopus
  2. A. W. Mohemmed, M. Zhang, and M. Johnston, “Particle swarm optimization based adaboost for face detection,” in Proceedings of the IEEE Congress on Evolutionary Computation (CEC '09), pp. 2494–2501, May 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. A. Alfi, “Particle swarm optimization algorithm with dynamic inertia weight for online parameter identification applied to Lorenz chaotic system,” International Journal of Innovative Computing, Information and Control, vol. 8, no. 2, pp. 1191–1203, 2012. View at Google Scholar · View at Scopus
  4. C. A. Perez, C. M. Aravena, J. I. Vallejos, P. A. Estevez, and C. M. Held, “Face and iris localization using templates designed by particle swarm optimization,” Pattern Recognition Letters, vol. 31, no. 9, pp. 857–868, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. J. Kennedy, “Small worlds and mega-minds: effects of neighborhood topology on particle swarm performance,” in Proceedings of the 1999 Congress on Evolutionary Computation, Washington, DC, USA, 1999.
  6. C. Yao and J. Yang, “The analysis of the PSO algorithm based on static and dynamic topological neighborhood of SF,” Journal of Chinese Computer Systems, vol. 33, no. 5, pp. 1113–1116, 2012. View at Google Scholar
  7. C. Kan, “Multidirectional learning and adaptive particle swarm optimization algorithm,” Computer Engineering and Applications, vol. 49, no. 6, pp. 23–28, 2013. View at Google Scholar
  8. D. Zhu, X. Zhang, and S. Li, “Discovering fuzzy community structure using local network topology information,” Journal of the University of Electronic Science and Technology of China, vol. 40, no. 1, pp. 73–79, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. A. Jiménez, “A complex network model for seismicity based on mutual information,” Physica A: Statistical Mechanics and Its Applications, vol. 392, no. 10, pp. 2498–2506, 2013. View at Google Scholar
  10. A. Buscarino, M. Frasca, L. Fortuna, and A. S. Fiore, “A new model for growing social networks,” IEEE Systems Journal, vol. 6, no. 3, pp. 531–538, 2012. View at Publisher · View at Google Scholar · View at Scopus
  11. A. L. Gutiérrez, M. Lanza, I. Barriuso et al., “Comparison of different PSO initialization techniques for high dimensional search space problems: a test with FSS and antenna arrays,” in Proceedings of the 5th European Conference on Antennas and Propagation (EUCAP '11), pp. 965–969, April 2011. View at Scopus
  12. C. Tong, J. W. Niu, G. Z. Qu, X. Long, and X. P. Gao, “Complex networks properties analysis for mobile ad hoc networks,” IET Communications, vol. 6, no. 4, pp. 370–380, 2012. View at Publisher · View at Google Scholar · View at Scopus
  13. S. Kamisetty, J. Garg, J. N. Tripathi, and J. Mukherjee, “Optimization of analog RF circuit parameters using randomness in particle swarm optimization,” in Proceedings of the World Congress on Information and Communication Technologies (WICT '11), pp. 274–278, December 2011. View at Publisher · View at Google Scholar · View at Scopus