Table of Contents Author Guidelines Submit a Manuscript
Mathematical Problems in Engineering
Volume 2014, Article ID 602724, 7 pages
Research Article

Relative Status Determination for Spacecraft Relative Motion Based on Dual Quaternion

1Research Center of Satellite Technology, Harbin Institute of Technology, Harbin 150080, China
2Shanghai Institute of Space Flight Control Technology, Shanghai 200030, China
3College of Aerospace and Civil Engineering, Harbin Engineering University, Harbin 150001, China

Received 26 February 2014; Accepted 7 April 2014; Published 8 May 2014

Academic Editor: Weichao Sun

Copyright © 2014 Jun Sun et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


For the two-satellite formation, the relative motion and attitude determination algorithm is a key component that affects the flight quality and mission efficiency. The relative status determination algorithm is proposed based on the Extended Kalman Filter (EKF) and the system state optimal estimate linearization. Aiming at the relative motion of the spacecraft formation navigation problem, the spacecraft relative kinematics and dynamics model are derived from the dual quaternion in the algorithm. Then taking advantage of EKF technique, combining with the dual quaternion integrated dynamic models, considering the navigation algorithm using the fusion measurement by the gyroscope and star sensors, the relative status determination algorithm is designed. At last the simulation is done to verify the feasibility of the algorithm. The simulation results show that the EKF algorithm has faster convergence speed and higher accuracy.