Table of Contents Author Guidelines Submit a Manuscript
Mathematical Problems in Engineering
Volume 2014, Article ID 784731, 11 pages
http://dx.doi.org/10.1155/2014/784731
Research Article

Impedance-Based Cable Force Monitoring in Tendon-Anchorage Using Portable PZT-Interface Technique

Department of Ocean Engineering, Pukyong National University, Daeyeon-dong, Nam-gu, Busan 608-737, Republic of Korea

Received 30 December 2013; Accepted 5 March 2014; Published 30 March 2014

Academic Editor: Ting-Hua Yi

Copyright © 2014 Thanh-Canh Huynh and Jeong-Tae Kim. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. Sohn, C. R. Farrar, F. M. Hemez, D. D. Shunk, D. W. Stinemates, and B. R. Nadler, “A review of structural health monitoring literature: 1996–2001,” Los Alamos National Laboratory Report LA-13976-MS, Los Alamos National Laboratory, Los Alamos, NM, USA, 2003. View at Google Scholar
  2. C. B. Yun and J. Min, “Smart sensing, monitoring, and damage detection for civil infrastructures,” KSCE Journal of Civil Engineering, vol. 15, no. 1, pp. 1–14, 2010. View at Google Scholar
  3. T. H. Yi and H. N. Li, “Methodology developments in sensor placement for health monitoring of civil infrastructures,” International Journal of Distributed Sensor Networks, vol. 2012, Article ID 612726, 11 pages, 2012. View at Publisher · View at Google Scholar
  4. H. Zui, T. Shinke, and Y. Namita, “Practical formulas for estimation of cable tension by vibration method,” Journal of Structural Engineering, vol. 122, no. 6, pp. 651–656, 1996. View at Google Scholar · View at Scopus
  5. B. H. Kim and T. Park, “Estimation of cable tension force using the frequency-based system identification method,” Journal of Sound and Vibration, vol. 304, no. 3-5, pp. 660–676, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. J.-T. Kim, J.-H. Park, D.-S. Hong, H.-M. Cho, W.-B. Na, and J.-H. Yi, “Vibration and impedance monitoring for prestress-loss prediction in PSC girder bridges,” Smart Structures and Systems, vol. 5, no. 1, pp. 81–94, 2009. View at Google Scholar · View at Scopus
  7. H. Li, J. Ou, and Z. Zhou, “Applications of optical fibre Bragg gratings sensing technology-based smart stay cables,” Optics and Lasers in Engineering, vol. 47, no. 10, pp. 1077–1084, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. J.-T. Kim, J.-H. Park, D.-S. Hong, and W.-S. Park, “Hybrid health monitoring of prestressed concrete girder bridges by sequential vibration-impedance approaches,” Engineering Structures, vol. 32, no. 1, pp. 115–128, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. J.-H. Park, J.-T. Kim, D.-S. Hong, D. Mascarenas, and J. Peter Lynch, “Autonomous smart sensor nodes for global and local damage detection of prestressed concrete bridges based on accelerations and impedance measurements,” Smart Structures and Systems, vol. 6, no. 5-6, pp. 711–730, 2010. View at Google Scholar · View at Scopus
  10. T. C. Huynh, S. Y. Lee, and J. T. Kim, “Wireless structural health monitoring of stay cables under two consecutive typhoons,” in Structural Monitoring and Maintenance, vol. 1, Techno-Press, 2014. View at Google Scholar
  11. C. Liang, F. P. Sun, and C. A. Rogers, “Coupled electro-mechanical analysis of adaptive material systems—determination of the actuator power consumption and system energy transfer,” Journal of Intelligent Material Systems and Structures, vol. 5, no. 1, pp. 12–20, 1994. View at Google Scholar · View at Scopus
  12. G. Park, H. H. Cudney, and D. J. Inman, “Feasibility of using impedance-based damage assessment for pipeline structures,” Earthquake Engineering and Structural Dynamics, vol. 30, no. 10, pp. 1463–1474, 2001. View at Publisher · View at Google Scholar · View at Scopus
  13. A. N. Zagrai and V. Giurgiutiu, “Electro-mechanical impedance method for crack detection in thin plates,” Journal of Intelligent Material Systems and Structures, vol. 12, no. 10, pp. 709–718, 2001. View at Publisher · View at Google Scholar · View at Scopus
  14. S. Bhalla and C. K. Soh, “Structural impedance based damage diagnosis by piezo-transducers,” Earthquake Engineering and Structural Dynamics, vol. 32, no. 12, pp. 1897–1916, 2003. View at Publisher · View at Google Scholar · View at Scopus
  15. Y. Yang, Y. Hu, and Y. Lu, “Sensitivity of PZT impedance sensors for damage detection of concrete structures,” Sensors, vol. 8, no. 1, pp. 327–346, 2008. View at Google Scholar · View at Scopus
  16. J. T. Kim, W. B. Na, J. H. Park, and D. S. Hong, “Hybrid health monitoring of structural joints using modal parameters and EMI signatures,” in Smart Structures and Materials: Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems, vol. 6174 of Proceeding of SPIE, San Diego, Calif, USA, 2006. View at Publisher · View at Google Scholar
  17. D. L. Mascarenas, Development of an impedance-based wireless sensor node for monitoring of bolted joint preload [M.S. thesis], Department of Structural Engineering, University of California, San Diego, Calif, USA, 2006.
  18. F. P. Sun, Z. Chaudhry, C. Liang, and C. A. Rogers, “Truss structure integrity identification using PZT sensor-actuator,” Journal of Intelligent Material Systems and Structures, vol. 6, no. 1, pp. 134–139, 1995. View at Google Scholar · View at Scopus
  19. T. R. Fasel, H. Sohn, G. Park, and C. R. Farrar, “Active sensing using impedance-based ARX models and extreme value statistics for damage detection,” Earthquake Engineering and Structural Dynamics, vol. 34, no. 7, pp. 763–785, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. D. L. Mascarenas, M. D. Todd, G. Park, and C. R. Farrar, “Development of an impedance-based wireless sensor node for structural health monitoring,” Smart Materials and Structures, vol. 16, no. 6, pp. 2137–2145, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. K. D. Nguyen and J. T. Kim, “Smart PZT-interface for wireless impedance-based prestress-loss monitoring in tendon-anchorage connection,” Smart Structures and Systems, vol. 9, no. 6, pp. 489–504, 2012. View at Google Scholar
  22. C. Liang, F. Sun, and C. A. Rogers, “Electro-mechanical impedance modeling of active material systems,” Smart Materials and Structures, vol. 5, no. 2, pp. 171–186, 1996. View at Publisher · View at Google Scholar · View at Scopus
  23. K. L. Johnson, Contact Mechanics, Cambridge University Press, Cambridge, UK, 1985.
  24. S. Ritdumrongkul, M. Abe, Y. Fujino, and T. Miyashita, “Quantitative health monitoring of bolted joints using a piezoceramic actuator-sensor,” Smart Materials and Structures, vol. 13, no. 1, pp. 20–29, 2004. View at Publisher · View at Google Scholar · View at Scopus
  25. V. Giurgiutiu and A. N. Zagrai, “Embedded self-sensing piezoelectric active sensors for on-line structural identification,” Journal of Vibration and Acoustics, vol. 124, no. 1, pp. 116–125, 2002. View at Google Scholar · View at Scopus
  26. G. Park, H. Sohn, C. R. Farrar, and D. J. Inman, “Overview of piezoelectric impedance-based health monitoring and path forward,” Shock and Vibration Digest, vol. 35, no. 6, pp. 451–463, 2003. View at Publisher · View at Google Scholar · View at Scopus