Mathematical Problems in Engineering / 2014 / Article / Tab 4

Research Article

A Double Evolutionary Pool Memetic Algorithm for Examination Timetabling Problems

Table 4

The fitness values of our algorithm compared against the best fitness values of current approaches.

Data setsOur resultCarter et al. [8]Caramia et al. [19]Di Gaspero and Schaerf [20]Paquete and Stützle [21]Burke and Newall [22]Burke et al. [1]

Car 916.47.16.66.24.655.0
Car 925.26.26.05.24.14.3
Ear 8339.836.429.345.238.237.0536.2
Hec 9211.810.89.212.211.211.5411.6
Kfu 9316.214.013.218.216.213.915.0
Lse 9114.510.59.615.213.210.8211.0
Rye 9212.37.36.8
Sta 83157.2161.5158.2160.2168.2168.73161.9
Tre 929.59.69.210.29.28.358.4
Uta 924.33.53.24.23.23.4
Ute 9228.625.824.427.829.225.8327.4
York 8340.541.736.241.238.237.2840.8

Data setsBurke et al. [23] Asmuni et al. [24] Côté et al. [17]Kendall and Hussin [25]Yang and Petrovic [26]Abdullah et al. [27]Burke et al. [28]

Car 914.85.195.25.374.55.25.36
Car 924.24.514.24.673.934.44.53
Ear 8335.436.6434.240.1833.734.937.92
Hec 9210.811.610.211.8610.8310.312.25
Kfu 9313.715.3414.215.8413.8213.515.2
Lse 9110.411.3511.210.3510.211.33
Rye 928.910.058.88.538.7
Sta 83159.1160.79157.2157.38158.35159.2158.19
Tre 928.38.478.28.397.928.48.92
Uta 923.43.523.23.143.63.88
Ute 9225.727.5525.227.625.3926.028.01
York 8336.739.7936.236.3536.241.37

Data SetsEley [29] Qu et al. [9]Pillay and Banzhaf [30]Burke et al. [31]Burke et al. [32]Xu et al. [33]

Car 915.25.164.94.65.196.5
Car 924.34.164.24.04.315.2
Ear 8336.835.8635.932.835.7939.6
Hec 9211.111.9411.510.011.1911.63
Kfu 9314.514.7914.413.014.5116.3
Lse 9111.311.1510.910.010.9213.4
Rye 929.810.8914.7
Sta 83157.3159.0157.8159.9157.18160.2
Tre 928.68.68.47.98.499.5
Uta 923.53.593.43.23.443.2
Ute 9226.428.327.224.826.727.9
York 8339.441.8139.337.2839.47