Table of Contents Author Guidelines Submit a Manuscript
Mathematical Problems in Engineering
Volume 2015 (2015), Article ID 165097, 8 pages
Research Article

A Flexible Modulation Scheme Design for C-Band GNSS Signals

College of Information & Communication Engineering, Harbin Engineering University, Harbin 150001, China

Received 9 February 2015; Revised 10 June 2015; Accepted 10 June 2015

Academic Editor: Emiliano Mucchi

Copyright © 2015 Rui Xue et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Due to the spectrum congestion of current navigation signals in L-band, C-band has been taken into consideration as a candidate frequency band for global navigation satellite system (GNSS). As is known, modulation scheme is the core part of signal structure, and how to design a modulation waveform that could make full use of narrow bandwidth 20 MHz and satisfy the constraint condition of frequency compatibility in C-band is the main research content of this paper. In view of transmission characteristics and constraint condition of compatibility in C-band, multi-h continuous phase modulation (CPM) is proposed as a candidate modulation scheme. Then the classical channel capacity estimation and a comprehensive evaluation criterion for GNSS modulation signals are employed to assess the proposed scheme in the aspects of the capacity over additive white Gaussian noise (AWGN), tracking accuracy, multipath mitigation, antijamming, and so on. Simulation results reveal that, through optimizing the number and size of modulation indexes, the flexible scheme could offer better performance in terms of code tracking, multipath mitigation, and antijamming compared with other candidates such as MSK and GMSK while maintaining high band efficiency and moderate implementation complexity of receiver. Moreover, this paper also provides a reference for next generation modulation signals in C-band.