Table of Contents Author Guidelines Submit a Manuscript
Mathematical Problems in Engineering
Volume 2015, Article ID 217904, 8 pages
http://dx.doi.org/10.1155/2015/217904
Research Article

New Algorithm Based on Sign Decomposition to Verify the Robust Stability Property for a Class of Linear Time-Delay Systems

1ECEN, Texas A&M University, College Station, TX 77840, USA
2UAT-UAM Reynosa Rodhe, 88779 Reynosa, TAMPS, Mexico
3FIME, Universidad Autónoma de Nuevo León, 66450 San Nicolás de los Garza, NL, Mexico

Received 22 December 2014; Accepted 16 April 2015

Academic Editor: Baocang Ding

Copyright © 2015 Iván D. Díaz-Rodríguez et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Malek-Zavarei and M. Jamshidi, Time-Delay Systems Analysis, Optimization and Applications, North-Holland, New York, NY, USA, 1987. View at MathSciNet
  2. Q. C. Zhong, Robust Control of Time-Delay Systems, Springer, London, UK, 2006.
  3. L. Dugard and E. I. Verriest, Stability of Control of Time-Delay Systems, Lecture Notes in Control and Informations Science, Springer, London, UK, 1998.
  4. G. Romero, Análisis de estabilidad robusta para sistemas dinámicos con retardo [Reporte de Tesis de Doctorado], FIME, Universidad Autónoma de Nuevo León, Nuevo León, Mexico, 1997.
  5. I. Díaz, Estabilidad Robusta de Sistemas Diferencia-Diferencial de segundo orden [Reporte de Tesis], UAM Reynosa-Rodhe, Universidad Autónoma de Tamaulipas, Tamaulipas, México, 2006.
  6. I. Díaz, “Estabilidad robusta de sistemas diferencia-diferencial de segundo orden,” Tu Revista Digi.UAT, vol. 2, no. 3, 2008. View at Google Scholar
  7. B. R. Barmish, New Tools for Robustness of Linear Systems, Macmillan Publishing Company, New York, NY, USA, 1994.
  8. D. Lara, G. Romero, A. Sanchez, and R. Lozano, “Parametric robust stability analysis for attitude control of a four-rotor mini-rotorcraft,” in Proceedings of the 45th IEEE Conference on Decision and Control (CDC '06), pp. 4351–4356, San Diego, Calif, USA, December 2006. View at Scopus
  9. V. L. Kharitonov, “Robust synthesis of time-delay systems,” in Proceedings of the 32nd Conference on Decision and Control, San Antonio, Tex, USA, 1993.
  10. G. Romero, I. Díaz, I. Pérez, A. Guerrero, D. Lara, and J. Rivera, “New results on robust stability for differential-difference systems with affine linear parametric uncertainty,” International Journal of Systems Science, vol. 44, no. 1, pp. 14–22, 2013. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  11. G. Romero, A. Palacios, J. Rivera, I. Pérez, D. Lara, and J. Arredondo, “Robust control techniques applied to the hot-dip galvanizing process,” Applied Mechanics and Materials, vol. 459, pp. 212–221, 2013. View at Publisher · View at Google Scholar · View at Scopus
  12. B. Ding, “Dynamic output feedback predictive control for nonlinear systems represented by a Takagi-Sugeno model,” IEEE Transactions on Fuzzy Systems, vol. 19, no. 5, pp. 831–843, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. B. Ding and T. Zou, “A synthesis approach for output feedback robust model predictive control based-on input-output model,” Journal of Process Control, vol. 24, no. 3, pp. 60–72, 2014. View at Publisher · View at Google Scholar · View at Scopus
  14. H. Li, H. Liu, H. Gao, and P. Shi, “Reliable fuzzy control for active suspension systems with actuator delay and fault,” IEEE Transactions on Fuzzy Systems, vol. 20, no. 2, pp. 342–357, 2012. View at Publisher · View at Google Scholar · View at Scopus
  15. H. Li, X. Jing, and H. R. Karimi, “Output-feedback-based H control for vehicle suspension systems with control delay,” IEEE Transactions on Industrial Electronics, vol. 61, no. 1, pp. 436–446, 2014. View at Publisher · View at Google Scholar · View at Scopus
  16. C. Elizondo, “Robust positivity of the determinant via sign decomposition,” in Proceedings of the World Multi-Conference on Systemics, Cybernetics and Informatics, vol. 15, pp. 355–360, Orlando, Fla, USA, July 2001.
  17. C. Elizondo, “Nuevos resultados en estabilidad robusta de sistemas LTI con incertidumbre paramétrica,” in Curso Tutorial Congreso Latinoamericano en Control Automático, Guadalajara, Mexico, 2002.
  18. L. H. Keel and S. P. Bhattacharyya, “Robust stability via sign-definite decomposition,” IEEE Transactions on Automatic Control, vol. 56, no. 1, pp. 140–145, 2011. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  19. M. J. Knap, L. H. Keel, and S. P. Bhattacharyya, “Robust Hurwitz stability via sign-definite decomposition,” Linear Algebra and its Applications, vol. 434, no. 7, pp. 1663–1676, 2011. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  20. A. Thowsen, “The Routh-Hurwitz method for stability determination of linear differential-difference systems,” International Journal of Control, vol. 33, no. 5, pp. 991–995, 1981. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  21. Z. V. Rekasius, “A stability test for systems with delays,” in Proceedings of the Joint Automatic Control Conference, Paper No. TP9-A, 1980.
  22. F. R. Gantmacher, The Theory of Matrices, vol. 2, Chelsea Publishing, New York, NY, USA, 1959.
  23. D. G. Luenberger, Optimization by Vector Space Methods, John Wiley & Sons, New York, NY, USA, 1969. View at MathSciNet