Table of Contents Author Guidelines Submit a Manuscript
Mathematical Problems in Engineering
Volume 2015, Article ID 579869, 11 pages
http://dx.doi.org/10.1155/2015/579869
Research Article

Fracture and Delamination Assessment of Prestressed Composite Concrete for Use with Pipe Jacking Method

1Department of Geotechnical Engineering, Civil Engineering College, Tongji University, Shanghai 200092, China
2State Key Laboratory for Disaster Deduction in Civil Engineering, Tongji University, Shanghai 200092, China

Received 24 January 2015; Accepted 17 April 2015

Academic Editor: Timon Rabczuk

Copyright © 2015 Qing Gong et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. M. Semanuik and B. Mergelas, “Comparison of identified distress in CCP pipelines operated by water utilities in North America,” in Pipelines 2006: Service to the Owner—Proceedings of the 2006 Pipeline Division Specialty Conference, pp. 1–8, 2006. View at Publisher · View at Google Scholar
  2. A. E. Romer, Failure of Prestressed Concrete Cylinder Pipe, AWWA Research Foundation, 2008.
  3. M. S. Higgins, A. Stroebele, and S. Zahidi, “Numbers don't lie: PCCP performance and deterioration based on a statistical review of a decade of condition assessment data,” Bridges, vol. 10, 2014. View at Google Scholar
  4. D. Wittas, “Statistical analysis of condition assessment data and prediction of future performance of PCCP,” in Proceedings of the Pipelines Conference, pp. 160–169, Seattle, Wash, USA, July 2011.
  5. M. S. Zarghamee, R. P. Ojdrovic, and P. D. Nardini, “Prestressed concrete cylinder pipe condition assessment—what works, what doesn't, what's next,” in Proceedings of the Pipelines: A Sound Conduit for Sharing Solutions, pp. 182–194, Water Research Foundation, Denver, Colo, USA, July 2011. View at Publisher · View at Google Scholar
  6. M. S. Zarghamee, F. J. Heger, and W. R. Dana, “Experimental evaluation of design methods for prestressed concrete plpe,” Journal of Transportation Engineering, vol. 114, pp. 635–655, 1988. View at Google Scholar
  7. M. S. Zarghamee, R. P. Ojdrovic, and W. R. Dana, “Coating delamination by radial tension in prestressed concrete pipe. I: experiments,” Journal of Structural Engineering, vol. 119, no. 9, pp. 2701–2719, 1993. View at Publisher · View at Google Scholar · View at Scopus
  8. S. Ge and S. K. Sinha, “Evaluation of Condition of Prestressed Concrete Cylidner Pipe (PCCP) using numerical simulation,” Proceedings of the Water Environment Federation, vol. 2011, no. 12, pp. 3952–3970, 2011. View at Publisher · View at Google Scholar
  9. H. Xiong, P. Li, and Q. Li, “FE model for simulating wire-wrapping during prestressing of an embedded prestressed concrete cylinder pipe,” Simulation Modelling Practice and Theory, vol. 18, no. 5, pp. 624–636, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. N. Nguyen-Thanh, J. Muthu, X. Zhuang, and T. Rabczuk, “An adaptive three-dimensional RHT-splines formulation in linear elasto-statics and elasto-dynamics,” Computational Mechanics, vol. 53, no. 2, pp. 369–385, 2014. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  11. T. Rabczuk and T. Belytschko, “A three-dimensional large deformation meshfree method for arbitrary evolving cracks,” Computer Methods in Applied Mechanics and Engineering, vol. 196, no. 29-30, pp. 2777–2799, 2007. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  12. X. Zhuang, C. Augarde, and S. Bordas, “Accurate fracture modelling using meshless methods, the visibility criterion and level sets: formulation and 2D modelling,” International Journal for Numerical Methods in Engineering, vol. 86, no. 2, pp. 249–268, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. X. Zhuang and Y. Cai, “A meshless local petrov-galerkin shepard and least-squares method based on duo nodal supports,” Mathematical Problems in Engineering, vol. 2014, Article ID 806142, 11 pages, 2014. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  14. X. Zhuang, Y. Cai, and C. Augarde, “A meshless sub-region radial point interpolation method for accurate calculation of crack tip fields,” Theoretical and Applied Fracture Mechanics, vol. 69, pp. 118–125, 2014. View at Publisher · View at Google Scholar · View at Scopus
  15. X. Zhuang, C. Heaney, and C. Augarde, “On error control in the element-free Galerkin method,” Engineering Analysis with Boundary Elements, vol. 36, no. 3, pp. 351–360, 2012. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  16. X. Zhuang, H. Zhu, and C. Augarde, “An improved meshless Shepard and least squares method possessing the delta property and requiring no singular weight function,” Computational Mechanics, vol. 53, no. 2, pp. 343–357, 2014. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  17. N. Vu-Bac, H. Nguyen-Xuan, L. Chen et al., “A phantom-node method with edge-based strain smoothing for linear elastic fracture mechanics,” Journal of Applied Mathematics, vol. 2013, Article ID 978026, 12 pages, 2013. View at Publisher · View at Google Scholar · View at Scopus
  18. H. Talebi, M. Silani, and T. Rabczuk, “Concurrent multiscale modelling of three dimensional crack and dislocation propagation,” Advances in Engineering Software, vol. 80, pp. 82–92, 2015. View at Publisher · View at Google Scholar
  19. S. Ghorashi, N. Valizadeh, S. Mohammadi, and T. Rabczuk, “T-spline based XIGA for fracture analysis of orthotropic media,” Computers & Structures, vol. 147, pp. 138–146, 2015. View at Publisher · View at Google Scholar
  20. N. Nguyen-Thanh, N. Valizadeh, M. N. Nguyen et al., “An extended isogeometric thin shell analysis based on Kirchhoff-Love theory,” Computer Methods in Applied Mechanics and Engineering, vol. 284, pp. 265–291, 2015. View at Publisher · View at Google Scholar · View at MathSciNet
  21. Y. Jia, Y. Zhang, G. Xu, X. Zhuang, and T. Rabczuk, “Reproducing kernel triangular B-spline-based FEM for solving PDEs,” Computer Methods in Applied Mechanics and Engineering, vol. 267, pp. 342–358, 2013. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  22. P. Areias, T. Rabczuk, and P. P. Camanho, “Initially rigid cohesive laws and fracture based on edge rotations,” Computational Mechanics, vol. 52, no. 4, pp. 931–947, 2013. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  23. Y. Cai, X. Zhuang, and C. Augarde, “A new partition of unity finite element free from the linear dependence problem and possessing the delta property,” Computer Methods in Applied Mechanics and Engineering, vol. 199, no. 17–20, pp. 1036–1043, 2010. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  24. Y. Cai, X. Zhuang, and H. Zhu, “A generalized and efficient method for finite cover generation in the numerical manifold method,” International Journal of Computational Methods, vol. 10, no. 5, Article ID 1350028, 19 pages, 2013. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  25. T. Rabczuk, S. Bordas, and G. Zi, “On three-dimensional modelling of crack growth using partition of unity methods,” Computers & Structures, vol. 88, no. 23-24, pp. 1391–1411, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. T. Rabczuk, R. Gracie, J.-H. Song, and T. Belytschko, “Immersed particle method for fluid-structure interaction,” International Journal for Numerical Methods in Engineering, vol. 81, no. 1, pp. 48–71, 2010. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  27. X. Y. Zhuang, R. Q. Huang, H. H. Zhu, H. Askes, and K. Mathisen, “A new and simple locking-free triangular thick plate element using independent shear degrees of freedom,” Finite Elements in Analysis and Design, vol. 75, pp. 1–7, 2013. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  28. W. Wu, H. Zhu, X. Zhuang, G. Ma, and Y. Cai, “A multi-shell cover algorithm for contact detection in the three dimensional discontinuous deformation analysis,” Theoretical and Applied Fracture Mechanics, vol. 72, pp. 136–149, 2014. View at Publisher · View at Google Scholar · View at Scopus
  29. H. Zhu, X. Zhuang, Y. Cai, and G. Ma, “High rock slope stability analysis using the enriched meshless Shepard and least squares method,” International Journal of Computational Methods, vol. 8, no. 2, pp. 209–228, 2011. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  30. X. Zhuang, J. Chun, and H. Zhu, “A comparative study on unfilled and filled crack propagation for rock-like brittle material,” Theoretical and Applied Fracture Mechanics, vol. 72, pp. 110–120, 2014. View at Publisher · View at Google Scholar
  31. P. Areias, T. Rabczuk, and D. Dias-da-Costa, “Element-wise fracture algorithm based on rotation of edges,” Engineering Fracture Mechanics, vol. 110, pp. 113–137, 2013. View at Publisher · View at Google Scholar · View at Scopus
  32. Z. P. Bazant and G. Pijaudier-Cabot, “Nonlocal continuum damage, localization instability and convergence,” Journal of Applied Mechanics, vol. 55, no. 2, pp. 287–293, 1988. View at Publisher · View at Google Scholar · View at Scopus
  33. C. A. Duarte, D.-J. Kim, and I. Babuška, “A global-local approach for the construction of enrichment functions for the generalized FEM and its application to three-dimensional cracks,” in Advances in Meshfree Techniques, vol. 5 of Computational Methods in Applied Sciences, pp. 1–26, Springer, Amsterdam, The Netherlands, 2007. View at Google Scholar
  34. R. de Borst, M. A. Gutiérrez, G. N. Wells, J. J. C. Remmers, and H. Askes, “Cohesive-zone models, higher-order continuum theories and reliability methods for computational failure analysis,” International Journal for Numerical Methods in Engineering, vol. 60, no. 1, pp. 289–315, 2004. View at Publisher · View at Google Scholar · View at Scopus
  35. R. de Borst, “Fracture in quasi-brittle materials: a review of continuum damage-based approaches,” Engineering Fracture Mechanics, vol. 69, no. 2, pp. 95–112, 2002. View at Publisher · View at Google Scholar · View at Scopus
  36. R. de Borst, J. Pamin, and M. G. D. Geers, “On coupled gradient-dependent plasticity and damage theories with a view to localization analysis,” European Journal of Mechanics A: Solids, vol. 18, no. 6, pp. 939–962, 1999. View at Publisher · View at Google Scholar · View at Scopus
  37. GB 50010-2010 Code for Design of Concrete Structures, Architecture and Building Press, Beijing, China, 2010.
  38. V. Birtel and P. Mark, “Parameterised finite element modelling of RC beam shear failure,” in Proceedings of the 2006 ABAQUS User's Conference, pp. 95–108, Boston, Mass, USA, May 2006.
  39. Z. P. Bažant and M. Jirásek, “Nonlocal integral formulations of plasticity and damage: survey of progress,” Journal of Engineering Mechanics, vol. 128, no. 11, pp. 1119–1149, 2002. View at Publisher · View at Google Scholar · View at Scopus
  40. Z. Caixiu, Finite element analysis of prestressed concrete cylinder pipe (PCCP) [M.S. thesis], Tianjin University, Tianjin, China, 2006.
  41. C. Wang, “Primary study of curved tunneling by pipe jacking,” Special Structures, vol. 4, 1998. View at Google Scholar