Table of Contents Author Guidelines Submit a Manuscript
Mathematical Problems in Engineering
Volume 2015, Article ID 708204, 11 pages
Research Article

Predicting the Water Level Fluctuation in an Alpine Lake Using Physically Based, Artificial Neural Network, and Time Series Forecasting Models

1Hydrotech Research Institute, National Taiwan University, Taipei 10617, Taiwan
2Department of Civil and Disaster Prevention Engineering, National United University, Miao-Li 36063, Taiwan
3Taiwan Typhoon and Flood Research Institute, National Applied Research Laboratories, Taipei 10093, Taiwan

Received 3 October 2014; Revised 9 March 2015; Accepted 20 March 2015

Academic Editor: Ufuk Yolcu

Copyright © 2015 Chih-Chieh Young et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Accurate prediction of water level fluctuation is important in lake management due to its significant impacts in various aspects. This study utilizes four model approaches to predict water levels in the Yuan-Yang Lake (YYL) in Taiwan: a three-dimensional hydrodynamic model, an artificial neural network (ANN) model (back propagation neural network, BPNN), a time series forecasting (autoregressive moving average with exogenous inputs, ARMAX) model, and a combined hydrodynamic and ANN model. Particularly, the black-box ANN model and physically based hydrodynamic model are coupled to more accurately predict water level fluctuation. Hourly water level data (a total of 7296 observations) was collected for model calibration (training) and validation. Three statistical indicators (mean absolute error, root mean square error, and coefficient of correlation) were adopted to evaluate model performances. Overall, the results demonstrate that the hydrodynamic model can satisfactorily predict hourly water level changes during the calibration stage but not for the validation stage. The ANN and ARMAX models better predict the water level than the hydrodynamic model does. Meanwhile, the results from an ANN model are superior to those by the ARMAX model in both training and validation phases. The novel proposed concept using a three-dimensional hydrodynamic model in conjunction with an ANN model has clearly shown the improved prediction accuracy for the water level fluctuation.