Table of Contents Author Guidelines Submit a Manuscript
Mathematical Problems in Engineering
Volume 2015, Article ID 738578, 13 pages
Research Article

Configuration, Deployment, and Scheduling Models for Management and Optimization of Patrol Services

Logistics Research Center, Shanghai Maritime University, Shanghai 200135, China

Received 30 September 2014; Revised 15 November 2014; Accepted 27 November 2014

Academic Editor: Kishin Sadarangani

Copyright © 2015 Bin Yang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


This paper presents a decision support system (DSS) and its models for patrol service center (PSC). PSC plays an important role in public security and emergency management. The configuration, deployment, and scheduling of resources of PSC are important for improving the efficiency of patrol-related resources, service quantity, and emergency response capability. A series of decision-making models of the DSS are studied. First, the criteria and models are proposed for configuring and deploying PSCs; second, three types of models for incremental, direct, and redeployment optimization are built in views for decisions aiming at PSC configuration, deployment, and scheduling problems; third, considering three typical patrol-related service scenarios (alarm assignment, main road blockade, and besiege program), three scheduling models are built, respectively, for PSC-related service and coordination of multiple PSCs. This work contributes to the literature on patrol services and network optimization problems in the following aspects: based on a series of models, a DSS framework is designed for PSCs; the models are formulated for resource management and scheduling upon geography information system; coordination strategies among close PSCs are incorporated into decision models. These features are examined in integration manners. The assessment criteria and optimization models studied in the paper are beneficial for building DSSs for PSC.