Table of Contents Author Guidelines Submit a Manuscript
Mathematical Problems in Engineering
Volume 2015 (2015), Article ID 917259, 13 pages
http://dx.doi.org/10.1155/2015/917259
Research Article

Local and Global Geometric Structure Preserving and Application to Hyperspectral Image Classification

1Department of Computer and Information Science, University of Macau, Avenida Padre Tomas Pereira, Taipa 1356, Macau
2Department of Mathematics and Computer Science, Guangxi Normal University of Nationalities, Chongzuo 532200, China

Received 15 December 2014; Revised 16 March 2015; Accepted 16 March 2015

Academic Editor: Hakim Naceur

Copyright © 2015 Huiwu Luo et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. M. Bioucas-Dias, A. Plaza, G. Camps-Valls, P. Scheunders, N. Nasrabadi, and J. Chanussot, “Hyperspectral remote sensing data analysis and future challenges,” IEEE Geoscience and Remote Sensing Magazine, vol. 1, no. 2, pp. 6–36, 2013. View at Publisher · View at Google Scholar
  2. A. Plaza, J. A. Benediktsson, J. W. Boardman et al., “Recent advances in techniques for hyperspectral image processing,” Remote Sensing of Environment, vol. 113, supplement 1, pp. S110–S122, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. M. Hasanlou and F. Samadzadegan, “Comparative study of intrinsic dimensionality estimation and dimension reduction techniques on hyperspectral images using K-NN classifier,” IEEE Geoscience and Remote Sensing Letters, vol. 9, no. 6, pp. 1046–1050, 2012. View at Publisher · View at Google Scholar · View at Scopus
  4. G. Camps-Valls, T. V. B. Marsheva, and D. Zhou, “Semi-supervised graph-based hyperspectral image classification,” IEEE Transactions on Geoscience and Remote Sensing, vol. 45, no. 10, pp. 3044–3054, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. C. M. Bachmann, T. L. Ainsworth, and R. A. Fusina, “Exploiting manifold geometry in hyperspectral imagery,” IEEE Transactions on Geoscience and Remote Sensing, vol. 43, no. 3, pp. 441–454, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. L. Ma, M. M. Crawford, and J.-W. Tian, “Generalised supervised local tangent space alignment for hyperspectral image classification,” Electronics Letters, vol. 46, no. 7, pp. 497–498, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. X. Chen, Y. Chen, and A. Hero, “Shrinkage fisher information embedding of high dimensional feature distributions,” in Proceedings of the Conference Record of the 45th Asilomar Conference on Signals, Systems and Computers (ASILOMAR '11), pp. 1877–1882, IEEE, Pacific Grove, Calif, USA, November 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. A. Mohan, G. Sapiro, and E. Bosch, “Spatially coherent nonlinear dimensionality reduction and segmentation of hyperspectral images,” IEEE Geoscience and Remote Sensing Letters, vol. 4, no. 2, pp. 206–210, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. C. K. Chui and J. Wang, “Randomized anisotropic transform for nonlinear dimensionality reduction,” GEM—International Journal on Geomathematics, vol. 1, no. 1, pp. 23–50, 2010. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  10. X. He and P. Niyogi, Locality Preserving Projections, MIT Press, Cambridge, Mass, USA, 2004.
  11. W. K. Wong and H. T. Zhao, “Supervised optimal locality preserving projection,” Pattern Recognition, vol. 45, no. 1, pp. 186–197, 2012. View at Publisher · View at Google Scholar · View at Scopus
  12. S. Vasuhi and V. Vaidehi, “Identification of human faces using orthogonal locality preserving projections,” in Proceedings of the International Conference on Signal Processing Systems (ICSPS '09), pp. 718–722, May 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. H. Cheng, K. A. Hua, and K. Vu, “Local and global structures preserving projection,” in Proceedings of the 19th IEEE International Conference on Tools with Artificial Intelligence (ICTAI '07), vol. 2, pp. 362–365, IEEE Computer Society, Washington, DC, USA, October 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. Q. Gao, J. Liu, H. Zhang, X. Gao, and K. Li, “Joint global and local structure discriminant analysis,” IEEE Transactions on Information Forensics and Security, vol. 8, no. 4, pp. 626–635, 2013. View at Publisher · View at Google Scholar
  15. S. Yan, D. Xu, B. Zhang, H.-J. Zhang, Q. Yang, and S. Lin, “Graph embedding and extensions: a general framework for dimensionality reduction,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 29, no. 1, pp. 40–51, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. Y. Ren, G. Zhang, G. Yu, and X. Li, “Local and global structure preserving based feature selection,” Neurocomputing, vol. 89, pp. 147–157, 2012. View at Publisher · View at Google Scholar · View at Scopus
  17. X. He, D. Cai, and J. Han, “Learning a maximum margin subspace for image retrieval,” IEEE Transactions on Knowledge and Data Engineering, vol. 20, no. 2, pp. 189–201, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. Q. Gao, H. Zhang, and J. Liu, “Two-dimensional margin, similarity and variation embedding,” Neurocomputing, vol. 86, pp. 179–183, 2012. View at Publisher · View at Google Scholar · View at Scopus
  19. X. Yin and Q. Huang, “Integrating global and local structures in semi-supervised discriminant analysis,” in Proceedings of the 3rd International Symposium on Intelligent Information Technology Application (IITA '09), vol. 1, pp. 720–723, Nanchang, China, November 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. M. Sugiyama, “Dimensionality reduction of multimodal labeled data by local fisher discriminant analysis,” Journal of Machine Learning Research, vol. 8, pp. 1027–1061, 2007. View at Google Scholar · View at Scopus
  21. T. V. Bandos, L. Bruzzone, and G. Camps-Valls, “Classification of hyperspectral images with regularized linear discriminant analysis,” IEEE Transactions on Geoscience and Remote Sensing, vol. 47, no. 3, pp. 862–873, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. A. Agarwal, T. El-Ghazawi, H. El-Askary, and J. Le-Moigne, “Efficient hierarchical-PCA dimension reduction for hyperspectral imagery,” in Proceedings of the IEEE International Symposium on Signal Processing and Information Technology, pp. 353–356, Cairo, Egypt, December 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. C. Hou, F. Nie, C. Zhang, and Y. Wu, “Learning an orthogonal and smooth subspace for image classification,” IEEE Signal Processing Letters, vol. 16, no. 4, pp. 303–306, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. J. Chen, J. Ye, and Q. Li, “Integrating global and local structures: a least squares framework for dimensionality reduction,” in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR '07), pp. 1–8, June 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. C.-C. Chang and C.-J. Lin, “LIBSVM: a library for support vector machines,” ACM Transactions on Intelligent Systems and Technology, vol. 2, no. 3, article 27, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. B.-C. Kuo, C.-H. Li, and J.-M. Yang, “Kernel nonparametric weighted feature extraction for hyperspectral image classification,” IEEE Transactions on Geoscience and Remote Sensing, vol. 47, no. 4, pp. 1139–1155, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. H. Zhang, Z.-J. Zha, S. Yan, M. Wang, and T.-S. Chua, “Robust non-negative graph embedding: towards noisy data, unreliable graphs, and noisy labels,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR '12), pp. 2464–2471, June 2012. View at Publisher · View at Google Scholar · View at Scopus