Table of Contents Author Guidelines Submit a Manuscript
Mathematical Problems in Engineering
Volume 2016, Article ID 2034136, 8 pages
http://dx.doi.org/10.1155/2016/2034136
Research Article

Stability and Hopf Bifurcation Analysis of an Epidemic Model by Using the Method of Multiple Scales

College of Science, Henan University of Engineering, Zhengzhou 451191, China

Received 7 May 2016; Accepted 2 August 2016

Academic Editor: Oleg V. Gendelman

Copyright © 2016 Wanyong Wang and Lijuan Chen. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. W. O. Kermack and A. G. Mckendrick, “A contribution to the mathematical theory of epidemics,” Proceedings of the Royal Society of London A, vol. 115, no. 772, pp. 700–721, 1927. View at Publisher · View at Google Scholar
  2. Y. Takeuchi, W. Ma, and E. Beretta, “Global asymptotic properties of a delay SIR epidemic model with finite incubation times,” Nonlinear Analysis: Theory, Methods & Applications, vol. 42, no. 6, pp. 931–947, 2000. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  3. T. Kuniya, “Global stability analysis with a discretization approach for an age-structured multigroup SIR epidemic model,” Nonlinear Analysis: Real World Applications, vol. 12, no. 5, pp. 2640–2655, 2011. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  4. R. Xu and Z. E. Ma, “Global stability of a SIR epidemic model with nonlinear incidence rate and time delay,” Nonlinear Analysis: Real World Applications, vol. 10, no. 5, pp. 3175–3189, 2009. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  5. R. Xu, Z. E. Ma, and Z. P. Wang, “Global stability of a delayed SIRS epidemic model with saturation incidence and temporary immunity,” Computers & Mathematics with Applications, vol. 59, no. 9, pp. 3211–3221, 2010. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  6. C. C. McCluskey, “Global stability for an SIR epidemic model with delay and nonlinear incidence,” Nonlinear Analysis: Real World Applications, vol. 11, no. 4, pp. 3106–3109, 2010. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  7. Y. Muroya, Y. Enatsu, and T. Kuniya, “Global stability for a multi-group SIRS epidemic model with varying population sizes,” Nonlinear Analysis: Real World Applications, vol. 14, no. 3, pp. 1693–1704, 2013. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  8. H. Y. Shu, D. J. Fan, and J. J. Wei, “Global stability of multi-group SEIR epidemic models with distributed delays and nonlinear transmission,” Nonlinear Analysis: Real World Applications, vol. 13, no. 4, pp. 1581–1592, 2012. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  9. C. J. Sun and Y.-H. Hsieh, “Global analysis of an SEIR model with varying population size and vaccination,” Applied Mathematical Modelling, vol. 34, no. 10, pp. 2685–2697, 2010. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  10. N. Yi, Q. L. Zhang, K. Mao, D. M. Yang, and Q. Li, “Analysis and control of an SEIR epidemic system with nonlinear transmission rate,” Mathematical and Computer Modelling, vol. 50, no. 9-10, pp. 1498–1513, 2009. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  11. J. Zhang, J. Q. Li, and Z. E. Ma, “Global dynamics of an SEIR epidemic model with immigration of different compartments,” Acta Mathematica Scientia, vol. 26, no. 3, pp. 551–567, 2006. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  12. X. Y. Zhou and J. A. Cui, “Analysis of stability and bifurcation for an SEIR epidemic model with saturated recovery rate,” Communications in Nonlinear Science and Numerical Simulation, vol. 16, no. 11, pp. 4438–4450, 2011. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  13. L.-I. Wu and Z. L. Feng, “Homoclinic bifurcation in an SIQR model for childhood diseases,” Journal of Differential Equations, vol. 168, no. 1, pp. 150–167, 2000. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  14. H. Hethcote, M. Zhien, and L. Shengbing, “Effects of quarantine in six endemic models for infectious diseases,” Mathematical Biosciences, vol. 180, pp. 141–160, 2002. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  15. S. A. A. El-Marouf and S. M. Alihaby, “Global analysis of an epidemic model with non-linear incidence rate,” Journal of Mathematics and Statistics, vol. 7, no. 4, pp. 319–325, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. Y. Z. Pei, S. Y. Liu, S. J. Gao, S. P. Li, and C. G. Li, “A delayed SEIQR epidemic model with pulse vaccination and the quarantine measure,” Computers & Mathematics with Applications, vol. 58, no. 1, pp. 135–145, 2009. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  17. K. L. Cooke, “Stability analysis for a vector disease model,” The Rocky Mountain Journal of Mathematics, vol. 9, no. 1, pp. 31–42, 1979. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  18. V. Capasso and G. Serio, “A generalization of the Kermack-McKendrick deterministic epidemic model,” Mathematical Biosciences, vol. 42, no. 1-2, pp. 43–61, 1978. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  19. A. H. Nayfeh and D. T. Mook, Nonlinear Oscillations, John Wiley & Sons, New York, NY, USA, 1979.
  20. A. Luongo, A. Paolone, and A. Di Egidio, “Multiple timescales analysis for 1:2 and 1:3 resonant Hopf bifurcations,” Nonlinear Dynamics, vol. 34, no. 3-4, pp. 269–291, 2003. View at Publisher · View at Google Scholar · View at MathSciNet