Table of Contents Author Guidelines Submit a Manuscript
Mathematical Problems in Engineering
Volume 2016 (2016), Article ID 6098021, 10 pages
http://dx.doi.org/10.1155/2016/6098021
Research Article

Fractional Differentiation-Based Active Contour Model Driven by Local Intensity Fitting Energy

1Department of Precision Instrument, Tsinghua University, Beijing 100084, China
2College of Computer Science and Information Technology, Zhejiang Wanli University, Ningbo 315100, China

Received 28 October 2015; Revised 28 March 2016; Accepted 19 April 2016

Academic Editor: Weizhong Dai

Copyright © 2016 Ming Gu and Renfang Wang. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Kass, A. Witkin, and D. Terzopoulos, “Snakes: active contour models,” International Journal of Computer Vision, vol. 1, no. 4, pp. 321–331, 1988. View at Publisher · View at Google Scholar · View at Scopus
  2. S. Osher and J. A. Sethian, “Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations,” Journal of Computational Physics, vol. 79, no. 1, pp. 12–49, 1988. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  3. D. Mumford and J. Shah, “Optimal approximations by piecewise smooth functions and associated variational problems,” Communications on Pure and Applied Mathematics, vol. 42, no. 5, pp. 577–685, 1989. View at Publisher · View at Google Scholar · View at MathSciNet
  4. T. F. Chan and L. A. Vese, “Active contours without edges,” IEEE Transactions on Image Processing, vol. 10, no. 2, pp. 266–277, 2001. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  5. C. Li, C.-Y. Kao, J. C. Gore, and Z. Ding, “Implicit active contours driven by local binary fitting energy,” in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR '07), pp. 1–7, Minneapolis, Minn, USA, June 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. C. Li, C.-Y. Kao, J. C. Gore, and Z. Ding, “Minimization of region-scalable fitting energy for image segmentation,” IEEE Transactions on Image Processing, vol. 17, no. 10, pp. 1940–1949, 2008. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  7. A. Carpinteri, B. Chiaia, and P. Cornetti, “Static-kinematic duality and the principle of virtual work in the mechanics of fractal media,” Computer Methods in Applied Mechanics and Engineering, vol. 191, no. 1-2, pp. 3–19, 2001. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  8. P. Zavada, “Relativistic wave equations with fractional derivatives and pseudodifferential operators,” Journal of Applied Mathematics, vol. 2, no. 4, pp. 163–197, 2002. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  9. J. Bai and X.-C. Feng, “Fractional-order anisotropic diffusion for image denoising,” IEEE Transactions on Image Processing, vol. 16, no. 10, pp. 2492–2502, 2007. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  10. H. A. Jalab and R. W. Ibrahim, “Texture enhancement based on the Savitzky-Golay fractional differential operator,” Mathematical Problems in Engineering, vol. 2013, Article ID 149289, 8 pages, 2013. View at Publisher · View at Google Scholar · View at MathSciNet
  11. Y.-F. Pu and J.-L. Zhou, “A novel approach for multi-scale texture segmentation based on fractional differential,” International Journal of Computer Mathematics, vol. 88, no. 1, pp. 58–78, 2011. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  12. K. B. Oldham and J. Spanier, The Fractional Calculus, Academic Press, New York, NY, USA, 1974. View at MathSciNet
  13. D. Tian, D. Xue, D. Cheri, and S. Sun, “A fractional-order regulatory CV model for brain MR image segmentation,” in Proceedings of the 25th Chinese Control and Decision Conference (CCDC '13), pp. 37–40, IEEE, May 2013. View at Publisher · View at Google Scholar · View at Scopus
  14. Y. Pu, W. Wang, J. Zhou, Y. Wang, and H. Jia, “Fractional differential approach to detecting textural features of digital image and its fractional differential filter implementation,” Science in China Series F: Information Sciences, vol. 51, no. 9, pp. 1319–1339, 2008. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  15. R. Malladi, J. A. Sethian, and B. C. Vemuri, “Shape modeling with front propagation: a level set approach,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 17, no. 2, pp. 158–175, 1995. View at Publisher · View at Google Scholar · View at Scopus
  16. K. Zhang, L. Zhang, H. Song, and W. Zhou, “Active contours with selective local or global segmentation: a new formulation and level set method,” Image and Vision Computing, vol. 28, no. 4, pp. 668–676, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. K. Zhang, L. Zhang, H. Song, and D. Zhang, “Reinitialization-free level set evolution via reaction diffusion,” IEEE Transactions on Image Processing, vol. 22, no. 1, pp. 258–271, 2013. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  18. C. Li, C. Xu, C. Gui, and M. D. Fox, “Distance regularized level set evolution and its application to image segmentation,” IEEE Transactions on Image Processing, vol. 19, no. 12, pp. 3243–3254, 2010. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  19. P. Perona and J. Malik, “Scale-space and edge detection using anisotropic diffusion,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 12, no. 7, pp. 629–639, 1990. View at Publisher · View at Google Scholar · View at Scopus