Table of Contents Author Guidelines Submit a Manuscript
Mathematical Problems in Engineering
Volume 2016 (2016), Article ID 9724917, 9 pages
http://dx.doi.org/10.1155/2016/9724917
Research Article

A Hybrid Wavelet Fuzzy Neural Network and Switching Particle Swarm Optimization Algorithm for AC Servo System

Department of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China

Received 6 May 2016; Revised 4 October 2016; Accepted 3 November 2016

Academic Editor: Andrea L. Facci

Copyright © 2016 Run-min Hou et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. R. Banaei and A. Kami, “Interline power flow controller (IPFC) based damping recurrent neural network controllers for enhancing stability,” Energy Conversion and Management, vol. 52, no. 7, pp. 2629–2636, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. R.-C. Hwang, Y.-J. Chen, and H.-C. Huang, “Artificial intelligent analyzer for mechanical properties of rolled steel bar by using neural networks,” Expert Systems with Applications, vol. 37, no. 4, pp. 3136–3139, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. Q. Gao, Y. Jin, Y.-L. Hou, and L.-J. Ji, “Modeling and control for mine sweeping plough electro-hydraulic servo system of certain mine-clearing vehicle,” Journal of Nanjing University of Science and Technology, vol. 36, no. 2, pp. 238–244, 2012. View at Google Scholar · View at Scopus
  4. Z. D. Qi, X. J. Zhu, and G. Y. Cao, “Neural networks modeling of MCFC system and fuzzy control research based on FGA,” in Proceedings of the 5th World Congress on Intelligent Control and Automation (WCICA '04), pp. 2486–2490, Hangzhou, China, June 2004. View at Scopus
  5. Z. D. Qi, X. J. Zhu, and G. Y. Cao, “Voltage model of DMFC based on neural networks identification,” Computer Simulation, vol. 22, no. 5, pp. 92–94, 2005. View at Google Scholar
  6. A. Sala, G. T. Marie, and R. Babuka, “Perspectives of fuzzy systems and control,” Fuzzy Sets and Systems, vol. 156, no. 3, pp. 432–444, 2005. View at Publisher · View at Google Scholar
  7. D.-W. Ding, X. Li, Y. Yin, and X.-P. Xie, “Further studies on relaxed stabilization conditions for discrete-time two-dimension Takagi-Sugeno fuzzy systems,” Information Sciences, vol. 189, pp. 143–154, 2012. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  8. J. Dong, Y. Wang, and G.-H. Yang, “Output feedback fuzzy controller design with local nonlinear feedback laws for discrete-time nonlinear systems,” IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, vol. 40, no. 6, pp. 1447–1459, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. H. K. Lam and J. Lauber, “Membership-function-dependent stability analysis of fuzzy-model-based control systems using fuzzy Lyapunov functions,” Information Sciences, vol. 232, pp. 253–266, 2013. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  10. J. Wang and J. Xiao, “Constructing fuzzy wavelet network modeling,” in Proceedings of the International Conference on Intelligent Computing, pp. 169–172, Hefie, China, 2005.
  11. M. K. Kahkeshi, F. Sheikholeslam, and M. Zekri, “Design of adaptive fuzzy wavelet neural sliding mode controller for uncertain nonlinear systems,” ISA Transactions, vol. 52, no. 3, pp. 342–350, 2013. View at Publisher · View at Google Scholar · View at Scopus
  12. R. H. Abiyev and O. Kaynak, “Fuzzy wavelet neural networks for identification and control of dynamic plants—a novel structure and a comparative study,” IEEE Transactions on Industrial Electronics, vol. 55, no. 8, pp. 3133–3140, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. R. Cheng and Y. Bai, “A novel approach to fuzzy wavelet neural network modeling and optimization,” International Journal of Electrical Power and Energy Systems, vol. 64, pp. 671–678, 2015. View at Publisher · View at Google Scholar · View at Scopus
  14. A. Ebadat, N. Noroozi, A. A. Safavi, and S. H. Mousavi, “New fuzzy wavelet network for modeling and control: the modeling approach,” Communications in Nonlinear Science and Numerical Simulation, vol. 16, no. 8, pp. 3385–3396, 2011. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  15. M. Davanipoor, M. Zekri, and F. Sheikholeslam, “Fuzzy wavelet neural network with an accelerated hybrid learning algorithm,” IEEE Transactions on Fuzzy Systems, vol. 20, no. 3, pp. 463–470, 2012. View at Publisher · View at Google Scholar · View at Scopus
  16. J. B. Oliveira, J. Boaventura Cunha, and P. B. Moura Oliveira, “A swarm intelligence-based tuning method for the sliding mode generalized predictive control,” ISA Transactions, vol. 53, pp. 1501–1515, 2014. View at Google Scholar
  17. Y. Tang, Z. Wang, and J.-A. Fang, “Parameters identification of unknown delayed genetic regulatory networks by a switching particle swarm optimization algorithm,” Expert Systems with Applications, vol. 38, no. 3, pp. 2523–2535, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. N. Zeng, Z. Wang, Y. Li, M. Du, and X. Liu, “A hybrid EKF and switching PSO algorithm for joint state and parameter estimation of lateral flow immunoassay models,” IEEE/ACM Transactions on Computational Biology and Bioinformatics, vol. 9, no. 2, pp. 321–329, 2012. View at Publisher · View at Google Scholar · View at Scopus
  19. Q. Gao, Z. Sun, G. Yang, R. Hou, L. Wang, and Y. Hou, “A novel active disturbance rejection-based control strategy for a gun control system,” Journal of Mechanical Science and Technology, vol. 26, no. 12, pp. 4141–4148, 2012. View at Publisher · View at Google Scholar · View at Scopus
  20. Y.-C. Zhu, D.-W. Ma, Z.-G. Li, and G.-G. Le, “Optimal sliding mode servo control with integral term for rocket launcher,” Acta Armamentarii, vol. 28, no. 10, pp. 1272–1275, 2007. View at Google Scholar · View at Scopus
  21. R. M. Hou, R. Z. Liu, Y. L. Hou, and Q. Gao, “High-power AC servo system identification research based on wavelet neural network,” Applied Mechanics and Materials, vol. 220–223, pp. 997–1002, 2012. View at Google Scholar
  22. S. Ganjefar and M. Alizadeh, “Inter-area oscillations damping by multi-objective wavelet neural inverse controlled SSSC,” International Review of Electrical Engineering, vol. 7, no. 2, pp. 4000–4012, 2012. View at Google Scholar · View at Scopus
  23. S. Yilmaz and Y. Oysal, “Fuzzy wavelet neural network models for prediction and identification of dynamical systems,” IEEE Transactions on Neural Networks, vol. 21, no. 10, pp. 1599–1609, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. Y. Tang, J.-A. Fang, and Q. Miao, “On the exponential synchronization of stochastic jumping chaotic neural networks with mixed delays and sector-bounded non-linearities,” Neurocomputing, vol. 72, no. 7–9, pp. 1694–1701, 2009. View at Publisher · View at Google Scholar · View at Scopus