• Views 438
• Citations 0
• ePub 7
• PDF 208
`Mathematical Problems in EngineeringVolume 2017, Article ID 1863714, 9 pageshttps://doi.org/10.1155/2017/1863714`
Research Article

## A New and Efficient Boundary Element-Free Method for 2-D Crack Problems

1School of Water Conservancy and Environment, Zhengzhou University, Zhengzhou 450001, China
2School of Civil Engineering and Architecture, Zhongyuan University of Technology, Zhengzhou 450007, China

Correspondence should be addressed to Jinchao Yue; nc.ude.uzz@cjeuy and Yuzhou Sun; moc.621@nusuohzuy

Received 4 September 2016; Revised 14 December 2016; Accepted 24 January 2017; Published 21 February 2017

Copyright © 2017 Jinchao Yue et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. T. A. Cruse, Boundary Element Analysis in Computational Fracture Mechanics, vol. 1 of Mechanics: Computational Mechanics, Kluwer Academic, Dordrecht, Netherlands, 1988.
2. M. H. Aliabadi, “Boundary element formulations in fracture mechanics,” Applied Mechanics Reviews, vol. 50, no. 2, pp. 83–96, 1997.
3. T. Y. Qin and R. J. Tang, “Finite-part integral and boundary element method to solve embedded planar crack problems,” International Journal of Fracture, vol. 60, no. 4, pp. 373–381, 1993.
4. T. Rangelov, P. Dineva, and D. Gross, “A hyper-singular traction boundary integral equation method for stress intensity factor computation in a finite cracked body,” Engineering Analysis with Boundary Elements, vol. 27, no. 1, pp. 9–21, 2003.
5. Y. X. Mukherjee, K. Shah, and S. Mukherjee, “Thermoelastic fracture mechanics with regularized hypersingular boundary integral equations,” Engineering Analysis with Boundary Elements, vol. 23, no. 1, pp. 89–96, 1999.
6. G. Xie, J. Zhang, C. Huang, C. Lu, and G. Li, “A direct traction boundary integral equation method for three-dimension crack problems in infinite and finite domains,” Computational Mechanics, vol. 53, no. 4, pp. 575–586, 2014.
7. H.-K. Hong and J.-T. Chen, “Derivations of integral equations of elasticity,” Journal of Engineering Mechanics, vol. 114, no. 6, pp. 1028–1044, 1988.
8. A. Portela, M. H. Aliabadi, and D. P. Rooke, “The dual boundary element method: effective implementation for crack problems,” International Journal for Numerical Methods in Engineering, vol. 33, no. 6, pp. 1269–1287, 1992.
9. I. A. Alatawi and J. Trevelyan, “A direct evaluation of stress intensity factors using the extended dual boundary element method,” Engineering Analysis with Boundary Elements, vol. 52, pp. 56–63, 2015.
10. E. Pan and B. Amadei, “Fracture mechanics analysis of cracked 2-D anisotropic media with a new formulation of the boundary element method,” International Journal of Fracture, vol. 77, no. 2, pp. 161–174, 1996.
11. E. Pan, “A general boundary element analysis of 2-D linear elastic fracture mechanics,” International Journal of Fracture, vol. 88, no. 1, pp. 41–59, 1997.
12. K. T. Chau and Y. B. Wang, “A new boundary integral formulation for plane elastic bodies containing cracks and holes,” International Journal of Solids and Structures, vol. 36, no. 14, pp. 2041–2074, 1999.
13. Y. Sun, Z. Zhang, S. Kitipornchai, and K. M. Liew, “Analyzing the interaction between collinear interfacial cracks by an efficient boundary element-free method,” International Journal of Engineering Science, vol. 44, no. 1-2, pp. 37–48, 2006.
14. Y.-Z. Sun, S.-S. Yang, and Y.-B. Wang, “A new formulation of boundary element method for cracked anisotropic bodies under anti-plane shear,” Computer Methods in Applied Mechanics and Engineering, vol. 192, no. 22-23, pp. 2633–2648, 2003.
15. Y. Sun and K. M. Liew, “Analyzing interaction between coplanar square cracks using an efficient boundary element-free method,” International Journal for Numerical Methods in Engineering, vol. 91, no. 11, pp. 1184–1198, 2012.
16. T. Belytschko, Y. Krongauz, D. Organ, M. Fleming, and P. Krysl, “Meshless methods: an overview and recent developments,” Computer Methods in Applied Mechanics and Engineering, vol. 139, no. 1-4, pp. 3–47, 1996.
17. T. Belytschko, Y. Y. Lu, and L. Gu, “Element-free Galerkin methods,” International Journal for Numerical Methods in Engineering, vol. 37, no. 2, pp. 229–256, 1994.
18. Y. Cheng, F. Bai, C. Liu, and M. Peng, “Analyzing nonlinear large deformation with an improved element-free Galerkin method via the interpolating moving least-squares method,” International Journal of Computational Materials Science and Engineering, vol. 5, no. 4, Article ID 1650023, 2016.
19. Y. M. Cheng, F. N. Bai, and M. J. Peng, “A novel interpolating element-free Galerkin (IEFG) method for two-dimensional elastoplasticity,” Applied Mathematical Modelling, vol. 38, no. 21-22, pp. 5187–5197, 2014.
20. T. Belytschko, Y. Y. Lu, and L. Gu, “Crack propagation by element-free Galerkin methods,” Engineering Fracture Mechanics, vol. 51, no. 2, pp. 295–315, 1995.
21. R. Das and P. W. Cleary, “A mesh-free approach for fracture modelling of gravity dams under earthquake,” International Journal of Fracture, vol. 179, no. 1-2, pp. 9–33, 2013.
22. Y.-M. Cheng, C. Liu, F.-N. Bai, and M.-J. Peng, “Analysis of elastoplasticity problems using an improved complex variable element-free Galerkin method,” Chinese Physics B, vol. 24, no. 10, Article ID 100202, 2015.
23. J. Dolbow, N. Moes, and T. Belytschko, “An extended finite element method for modeling crack growth with frictional contact,” Computer Methods in Applied Mechanics and Engineering, vol. 190, no. 51-52, pp. 6825–6846, 2001.
24. A. Afshar, A. Daneshyar, and S. Mohammadi, “XFEM analysis of fiber bridging in mixed-mode crack propagation in composites,” Composite Structures, vol. 125, pp. 314–327, 2015.
25. F. Liao and Z. Huang, “An extended finite element model for modelling localised fracture of reinforced concrete beams in fire,” Computers & Structures, vol. 152, pp. 11–26, 2015.
26. V. S. Kothnur, S. Mukherjee, and Y. X. Mukherjee, “Two-dimensional linear elasticity by the boundary node method,” International Journal of Solids and Structures, vol. 36, no. 8, pp. 1129–1147, 1998.
27. F. Yan, X.-T. Feng, J.-H. Lv, P.-Z. Pan, and S.-J. Li, “A new dual reciprocity hybrid boundary node method based on Shepard and Taylor interpolation method and Chebyshev polynomials,” Engineering Analysis with Boundary Elements, vol. 73, pp. 61–68, 2016.
28. K. M. Liew, Y. Cheng, and S. Kitipornchai, “Boundary element-free method (BEFM) and its application to two-dimensional elasticity problems,” International Journal for Numerical Methods in Engineering, vol. 65, no. 8, pp. 1310–1332, 2006.
29. B. D. Dai and Y. M. Cheng, “An improved local boundary integral equation method for two-dimensional potential problems,” International Journal of Applied Mechanics, vol. 2, no. 2, pp. 421–436, 2010.
30. M. Peng and Y. Cheng, “A boundary element-free method (BEFM) for two-dimensional potential problems,” Engineering Analysis with Boundary Elements, vol. 33, no. 1, pp. 77–82, 2009.
31. Y. Sun, B. Chen, Y. Zhu, and Z. Zhang, “Higher-order continuum model and mesh-free simulation for microtubules under hydrostatic presssure,” Nanoscience and Nanotechnology Letters, vol. 4, no. 6, pp. 593–597, 2012.
32. Y. Sun and K. M. Liew, “The buckling of single-walled carbon nanotubes upon bending: The higher order gradient continuum and mesh-free method,” Computer Methods in Applied Mechanics and Engineering, vol. 197, no. 33–40, pp. 3001–3013, 2008.
33. Z. Tang, S. Shen, and S. N. Atluri, “Analysis of materials with strain-gradient effects: a meshless local Petrov-Galerkin (MLPG) approach, with nodal displacements only,” Computer Modeling in Engineering and Sciences, vol. 4, no. 1, pp. 177–196, 2003.
34. G. Monegato, “The numerical evaluation of one-dimensional Cauchy principal value integrals,” Computing, vol. 29, no. 4, pp. 337–354, 1982.
35. Y. Murakanal, Stress Intensity Factors Handbook, vol. 1-2, Pergamon Press, Oxford, UK, 1987.
36. C. A. Brebbia, The Boundary Element Method for Engineers, Pentech Press, London, UK, 2nd edition, 1984.
37. P. K. Banerjee and R. Butterfield, Boundary Element Methods in Engineering Science, McGraw-Hill, London, UK, 1981.
38. K. M. Liew, Y. Sun, and S. Kitipornchai, “Boundary element-free method for fracture analysis of 2-D anisotropic piezoelectric solids,” International Journal for Numerical Methods in Engineering, vol. 69, no. 4, pp. 729–749, 2007.