Table of Contents Author Guidelines Submit a Manuscript
Mathematical Problems in Engineering
Volume 2017 (2017), Article ID 5612743, 7 pages
https://doi.org/10.1155/2017/5612743
Research Article

Application of Mathematical Symmetrical Group Theory in the Creation Process of Digital Holograms

1Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Autopista del Sol Km 104, Real del Puente, 62790 Xochitepec, MOR, Mexico
2Facultad de Ingeniería, Universidad Autónoma del Carmen, 24180 Ciudad del Carmen, CAM, Mexico
3CONACyT-Centro de Investigación en Matemáticas, 97205 Mérida, YUC, Mexico

Correspondence should be addressed to Rafael Sanchez-Lara; moc.liamg@racanuafar

Received 13 March 2017; Revised 7 June 2017; Accepted 20 June 2017; Published 31 July 2017

Academic Editor: Pasquale Memmolo

Copyright © 2017 Agustín Pérez-Ramírez et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. U. Schnars, Digital Holography, Springer, New York, NY, USA, 2005.
  2. Y. Ichihashi, H. Nakayama, T. Ito et al., “HORN-6 special-purpose clustered computing system for electroholography,” Optics Express, vol. 17, no. 16, pp. 13895–13903, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. M. Lucente, “Interactive computation of holograms using a look-up table,” Journal of Electronic Imaging, vol. 2, no. 1, pp. 28–34, 1993. View at Publisher · View at Google Scholar · View at Scopus
  4. J. Jia, Y. Wang, J. Liu et al., “Reducing the memory usage for effective computer-generated hologram calculation using compressed look-up table in full-color holographic display,” Applied Optics, vol. 52, no. 7, pp. 1404–1412, 2013. View at Google Scholar
  5. T. Nishitsuji, T. Shimobaba, T. Kakue, and T. Ito, “Fast calculation of computer-generated hologram using run-length encoding based recurrence relation,” Optics Express, vol. 23, no. 8, pp. 9852–9857, 2015. View at Publisher · View at Google Scholar · View at Scopus
  6. S. Jiao, Z. Zhuang, and W. Zou, “Fast computer generated hologram calculation with a mini look-up table incorporated with radial symmetric interpolation,” Optics Express, vol. 25, no. 1, pp. 112–123, 2017. View at Publisher · View at Google Scholar
  7. D.-W. Kwon, S.-C. Kim, and E.-S. Kim, “Efficient digital hologram generation using reflection symmetry of principle fringe pattern,” in Proceedings of the ICTC 2010, pp. 197-198, IEE, Jeju, South Korea, November 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. S. Lee, H. C. Wey, D. K. Nam, D. S. Park, and C. Y. Kim, “Fast hologram pattern generation by radial symmetric interpolation,” in Optics and Photonics for Information Processing VI, Proceedings of SPIE, pp. 84980O-1–84980O-7, San Diego, Calif, USA, August 2012. View at Publisher · View at Google Scholar
  9. S.-C. Kim and E.-S. Kim, “Effective generation of digital holograms of three-dimensional objects using a novel look-up table method,” Applied Optics, vol. 47, no. 19, pp. D55–D62, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. S. Cho, B.-K. Ju, N.-Y. Kim, and M.-C. Park, “One-eighth look-up table method for effectively generating computer-generated hologram patterns,” Optical Engineering, vol. 53, no. 5, Article ID 054108, 2014. View at Publisher · View at Google Scholar · View at Scopus
  11. N. Okada, T. Shimobaba, Y. Ichihashi et al., “Fast calculation of a computer-generated hologram for RGB and depth images using a Wavefront recording plane method,” Photonics Letters of Poland, vol. 6, no. 3, pp. 90–92, 2014. View at Publisher · View at Google Scholar · View at Scopus
  12. H. Wei, G. Gong, and N. Li, “Improved look-up table method of computer-generated holograms,” Applied Optics, vol. 55, no. 32, pp. 9255–9264, 2016. View at Publisher · View at Google Scholar · View at Scopus
  13. Ye. A. Shelomov, “On m correlation matrices,” II journal communications Technology and electronics, vol. 39, no. 13, pp. 79–91, 1994. View at Google Scholar
  14. E. Shelomov, J. Seguel, A. Ortiz, J. Ruz, and G. Shelomova, “Análisis de Fourier en grupos finitos con utilidades de Matlab,” in Proceedings of the CINVESTAV, 2002, pp. 90–116, CINVESTAV, Mexico City, Mexico, june 2002.
  15. M. Hamermesh, Group Theory and Its Applications to Physical Problems, Addison-Wesley, New York, NY, USA, 1962.
  16. D. K. Maslen and D. N. Rockmore, “The cooley–tukey FFT and group theory. Modern signal processing,” MSRI Publications, vol. 46, 2003. View at Google Scholar
  17. R. Johnsonbaugh, Discrete Mathematics, Prentice Halls, New York, NY, USA, 6th edition, 2005.
  18. Poon T.-C. and P. P. Banerjee, Contemporary Optical Image Processing with MATLAB, Rastogi and Inaudi, Oxford, UK, 1st edition, 2001.
  19. T. C. Poon, Optical Scanning Holography with MATLAB, Springer Science and Business Media, Berlin, Germany, 2007.
  20. J. W. Goodman, Introduction to Fourier Optics, Roberts and Company Publishers, 2005.
  21. R. P. Muffoletto, Numerical techniques for Fresnel diffraction in computational holography [Ph.D. thesis], University of Louisiana, 2006.
  22. T. F. Raúl, Modulación completa del plano complejo mediante pantallas de cristal líquido. Aplicación a la reconstrucción de hologramas de Fresnel digitales [Ph.D. thesis], University of Barcelona, 2004.