Research Article

Prognostics for State of Health of Lithium-Ion Batteries Based on Gaussian Process Regression

Table 1

Prediction errors comparison of different methods for batteries Nos. 5, 6, and 7.
(a)

Battery numberError criteriaBasic GPRLGPFRQGPFRCombination LGPFRCombination QGPFRSMK-GPR

5MAPE (%)12.1023.01.901.602.101.65
RMSE (%)13.031.711.501.361.801.38
6MAPE (%)27.010.307.7010.2029.010.60
RMSE (%)22.516.905.126.8620.447.08
7MAPE (%)19.201.905.401.702.601.91
RMSE (%)20.701.595.521.732.691.88

(b)

Battery numberError criteriaP-MGPRSE-MGPRModel IModel IIModel III

5MAPE (%)1.551.380.800.940.91
RMSE (%)1.361.200.740.830.83
6MAPE (%)2.962.931.000.992.18
RMSE (%)2.122.110.820.811.71
7MAPE (%)1.091.020.740.731.12
RMSE (%)1.141.070.820.811.71

Note. Some experimental results are obtained from [24, 27]; LGPFR: Gaussian process functional regression with linear mean function [24]; QGPFR: Gaussian process functional regression with quadratic polynomial mean function [24]; Combination LGPFR: LGPFR with combination of squared exponential covariance function and periodic covariance function [24]; Combination QGPFR: QGPFR with combination of squared exponential covariance function and periodic covariance function [24]; SMK-GPR: the GPR method with spectral mixture kernels [27]; SE-MGPR: multiscale GPR methods with squared exponential function [27]; P-MGPR: multiscale GPR methods with periodic covariance function [27].