Table of Contents Author Guidelines Submit a Manuscript
Mathematical Problems in Engineering
Volume 2019, Article ID 1613726, 9 pages
https://doi.org/10.1155/2019/1613726
Research Article

Modeling an Aquifer: Numerical Solution to the Groundwater Flow Equation

1Benemérita Universidad Autónoma de Puebla, Facultad de Ingeniería, 72570 Puebla, Mexico
2Benemérita Universidad Autónoma de Puebla, Facultad de Ingeniería Química, 72570 Puebla, Mexico

Correspondence should be addressed to V. Vázquez-Báez; xm.paub.oerroc@zeuqzav.leunam

Received 20 September 2018; Revised 11 December 2018; Accepted 27 December 2018; Published 17 January 2019

Academic Editor: Ana C. Teodoro

Copyright © 2019 V. Vázquez-Báez et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. F. Wang and M. P. Anderson, Introduction to Groundwater Modeling, Academic Press, 1995.
  2. A. Fowler, Mathematical geoscience, Springer, 2011. View at Publisher · View at Google Scholar · View at MathSciNet
  3. T. Lochbühler, J. Doetsch, R. Brauchler, and N. Linde, “Structure-coupled joint inversion of geophysical and hydrological data,” Geophysics, vol. 78, no. 3, pp. ID1–ID14, 2013. View at Publisher · View at Google Scholar · View at Scopus
  4. Comisión Nacional del Agua, Determinación de la disponibilidad de agua en el acuífero Valle de Puebla (2104), Estado de Puebla, Puebla, Mexico, 2014.
  5. J. Bear and A. H. D. Cheng, Modeling Groundwater Flow and Contaminant Transport, Springer, 2010. View at Publisher · View at Google Scholar
  6. G. De Marsily, F. Delay, V. Teles, and M. T. Schafmeister, “Some current methods to represent the heterogeneity of natural media in hydrogeology,” Hydrogeology Journal, vol. 6, no. 1, pp. 115–130, 1998. View at Publisher · View at Google Scholar · View at Scopus
  7. A. Atangana and B. S. T. Alkahtani, “New model of groundwater flowing within a confine aquifer: Application of Caputo-Fabrizio derivative,” Arabian Journal of Geosciences, vol. 9, no. 8, 2016. View at Google Scholar
  8. B. E. Villagran, Análisis de la sobre-explotación del acuífero de Texcoco, Colegio de Posgraduados, Campus Montecillo, Postgrado en Hidrociencias, 2010. View at Publisher · View at Google Scholar
  9. C. Grossmann, H.-G. Roos, and M. Stynes, Numerical Treatment of Partial Differential Equations, Springer, Berlin, Germany, 1st edition, 2007. View at Publisher · View at Google Scholar · View at MathSciNet
  10. D. K. Todd and L. W. Mays, Groundwater Hydrology, Wiley, 3rd edition, 2004.
  11. J. Tóth, “A theory of groundwater motion in small drainage basins in central Alberta, Canada,” Journal of Geophysical Research: Atmospheres, vol. 67, no. 11, pp. 4375–4388, 1962. View at Publisher · View at Google Scholar
  12. J. Tóth, “A theoretical analysis of groundwater flow in small drainage basins,” Journal of Geophysical Research: Atmospheres, vol. 68, no. 16, pp. 4795–4812, 1963. View at Publisher · View at Google Scholar
  13. M. J. Simpson, “Calculating groundwater response times for flow in heterogeneous porous media,” Groundwater, vol. 56, no. 2, pp. 337–342, 2018. View at Publisher · View at Google Scholar · View at Scopus
  14. M. J. Simpson, F. Jazaei, and T. P. Clement, “How long does it take for aquifer recharge or aquifer discharge processes to reach steady state?” Journal of Hydrology, vol. 501, pp. 241–248, 2013. View at Publisher · View at Google Scholar · View at Scopus
  15. P. Rousseau-Gueutin, A. J. Love, G. Vasseur, N. I. Robinson, C. T. Simmons, and G. De Marsily, “Time to reach near-steady state in large aquifers,” Water Resources Research, vol. 49, no. 10, pp. 6893–6908, 2013. View at Publisher · View at Google Scholar · View at Scopus
  16. H. Haitjema, “The role of hand calculations in ground water flow modeling,” Groundwater, vol. 44, no. 6, pp. 786–791, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. F. Jazaei, M. J. Simpson, and T. P. Clement, “Spatial analysis of aquifer response times for radial flow processes: Nondimensional analysis and laboratory-scale tests,” Journal of Hydrology, vol. 532, pp. 1–8, 2016. View at Publisher · View at Google Scholar
  18. J. Bredehoeft and T. Durbin, “Ground water development-the time to full capture problem,” Groundwater, vol. 47, no. 4, pp. 506–514, 2009. View at Publisher · View at Google Scholar
  19. J. B. Scarborough, Numerical mathematical analysis, The Johns Hopkins Press, 6th edition, 1966. View at MathSciNet
  20. A. Quarteroni and A. Valli, Numerical approximation of partial differential equations, Springer, Berlin, Germany, 1st edition, 2008. View at MathSciNet
  21. Instituto Tecnológico Geominero de España, “Consejería de Obras Públicas y Transportes de la Junta de Andalucía, Consejería de Trabajo e Industria de la Junta de Andalucía, Atlas Hidrogeológico de Andalucía,” http://aguas.igme.es/igme/publica/libros1HR/libro110/lib110.htm, 1998.
  22. A. G. Martínez, Hidrogeología de la region suroccidental de la Provincia de Huelva, Servicio de Publicaciones de la Universidad de Huelva, 1986.
  23. P. A. Domenico and F. W. Schwartz, Physical and Chemical Hydrogeology, J. Wiley, New York, NY, USA, 1990.
  24. S. K. Hansen, S. Pandey, S. Karra, and V. V. Vesselinov, “CHROTRAN: A mathematical and computational model for in situ heavy metal remediation in heterogeneous aquifers, Los Alamos National Laboratory,” Tech. Rep. LA-UR-16-29041, 2017, https://arxiv.org/abs/1703.01381. View at Google Scholar
  25. J. Barthélemy, T. Carletti, L. Collier, V. Hallet, M. Moriamé, and A. Sartenaer, “Interaction prediction between groundwater and quarry extension using discrete choice models and artificial neural networks,” Environmental Earth Sciences, vol. 75, article no. 1467, 2016. View at Google Scholar · View at Scopus