Mathematical Problems in Engineering

Mathematical Problems in Engineering / 2019 / Article

Research Article | Open Access

Volume 2019 |Article ID 2584397 | 11 pages | https://doi.org/10.1155/2019/2584397

A Novel Design of Three-Dimensional MHD Flow of Second-Grade Fluid past a Porous Plate

Academic Editor: Francisco R. Villatoro
Received11 May 2019
Revised19 Jun 2019
Accepted04 Aug 2019
Published28 Aug 2019

Abstract

In this study, a novel theoretical model for three-dimensional (3D) laminar magnetohydrodynamic (MHD) flow of a non-Newtonian second-grade fluid along a plate of semi-infinite length is developed based on slightly sinusoidal transverse suction velocity. The suction velocity involves a steady distribution with a low superimposed perpendicularly varying dispersion. The strength of the uniform magnetic field is incorporated in the normal direction to the wall. The variable suction transforms the fluidic problem into a 3D flow problem because of variable suction velocity in the normal direction to the plane wall. The proposed mathematical modeling and its dynamical analysis are prescribed for the boundary layer flow keeping the magnetic effects without taking into consideration the induced magnetic field. An analytical perturbation technique is employed for the series solutions of the system of ordinary differential equations of velocity profile and pressure. Graphical illustrations are used to analyze the behavior of different proficient parameters of interest. The magnetic parameter is responsible for accelerating the main flow velocity, while controlling the cross flow velocities.

1. Introduction

The electrically conducting fluid flows due to the effect of the transverse magnetic field have received attention of a large section of research community because of their use in engineering, astrophysics, and geophysics and in the field of aerodynamics to control the boundary layer. In industries, the induced magnetic field-based procedures are used for excursion, heat exchanger, pump, and levitate liquid metals. Gersten and Gross [1] investigated the heat transfer effects on the three-dimensional fluid flows based on main and cross flow velocity components along a porous plane wall based on the transverse sinusoidal suction velocity distribution. Singh et al. [2] analyzed the problem of the 3D porous medium based on convective flow. The authors also incorporated heat transfer effects in the fluidic problem. Furthermore, Singh [3, 4] analyzed the hydromagnetic and magnetohydrodynamic impacts on 3D free convective fluid flow. The authors considered a vertical porous wall for the impact of porosity on the flow problem. Furthermore, the effect of the magnetic field with unvarying strength is incorporated perpendicular to the free convective fluid flow which is electrically conducting through a semi-infinite plate [5]. Later on, Helmy [6] discussed the heat transfer impact on the flow of an electrically conducting fluid across an infinite plane wall with variable suction.

Researchers have extensively exploited the field of magnetohydrodynamics with reference to geometrical configuration, various types of formulations, and different dimensions using analytical and numerical methods [719]. The authors investigated the influence of the magnetic field on different structures of flow dimensions for distributions of concentrations and temperatures. Moreover, the magnetic parameter is proved to be a controlling parameter to restrain the fluid and heat flows under the closed spaces. Different types of non-Newtonian fluids bargain applications in many magnetohydrodynamic devices and in power generation as well. Magnetohydrodynamics with different types of convective flows, heat generation/absorption, and transfer analysis [2025] have been investigated in detail.

Gupta and Johari [26] presented the analysis of 3D magnetohydrodynamic flow across a porous plane wall, and the fluid taken into account is laminar having the power of conducting heat. The authors considered a magnetic flux in the normal direction to the plate. Moreover, Guria and Jana [27] considered a vertical porous wall for the three-dimensional hydrodynamic fluid flow problem. Furthermore, Greenspan and Carrier [28], Rossow [29], and Singh [30] presented their studies extensively on the magnetohydrodynamic impacts on the flow across a plane wall based on injection or suction. There are some non-Newtonian models presenting the three-dimensional fluidic problems though a porous wall with variable suction [3135]. Periodic suction has received very much attention in the field of aerodynamics [3638]. The porous medium has very much importance in the fluid dynamics [3945]. Abbas et al. [46] studied 3D peristaltic flow fluid with hyperbolic tangent in the nonuniform channel along flexible walls. Bhatti and Lu [47] studied analytical analysis of the head-on collision mechanism among hydroelastic solitary waves with uniform current. Jhorar et al. [48] analyzed the microfluid in the channel for the electroosmosis-modulated biomechanical transport.

The motivation of this study is to analyze the 3D MHD flow of the simplest non-Newtonian second-grade fluidic model through a semi-infinite wall which is based on succession of waves or curves with fluctuating velocity distribution. A uniform suction velocity along the surface of the plane wall transforms the problem into a 2D asymptotic suction velocity solution [49]; however, because of the variable suction velocity distribution in the normal direction, the fluidic system turns out to be 3D. The analytical perturbation technique is incorporated for finding the series solution of this problem. The proposed outcomes are estimated for different parameters of interest such as the suction parameter , second-grade parameter , Reynolds number , and Hartmann number . This article is organized as follows: Section 2 consists of the statement of the problem, Section 3 presents the perturbation method, Section 4 specifies the design of the problem, Sections 5 and 6 describe analytical solutions, Section 7 integrates results and discussion, and Section 8 contains conclusions. In addition to these, appendices and nomenclature are given thereafter.

2. Statement of the Problem

In this problem, the 3D steady, laminar magnetohydrodynamic flow of an incompressible non-Newtonian second-grade fluid passing through an infinite plate is considered. The plane is considered where -axis is normal to the plane (see Figure 1). A time-independent distribution is a basic steady distribution [1], in which l and indicate the wavelength and amplitude of the variable suction velocity, respectively. Thus, variable suction velocity has the following form:

The fluidic system becomes two-dimensional because of constant suction velocity, whereas it is three-dimensional in case of variable suction velocity [49]. A constant magnetic field in the normal direction to the wall is applied. Also, the following are considered: (i) the fluid has electric conduction; (ii) the fluid has steady and laminar flow; (iii) the fluid has uniform free stream velocity; (iv) the magnetic Reynolds number is at small scale, and also the induced magnetic field is inconsiderable; (v) Hall and polarization effects are neglected; and (vi) all physical properties of the parameters are independent of because of the infinite extended length of the plate in the direction, but the flow remains 3D because of the variable suction velocity (1).

3. Perturbation Method

Perturbation methods [5052] are strong mathematical tools to find the series/approximate solutions of those problems whose analytic or exact solutions are not possible or hard to find. These techniques have frequently been used for the problems arising in the fields of engineering and science. The function is convoluted in physical problems, and then it can be shown mathematically by the differential equationsubject to the boundary conditionwhere is a vector or scalar independent variable and is a parameter. One cannot solve this problem exactly, in general. However, if there exists an ( can be scaled so that ) for which the above problem can be solved exactly, then one explores to obtain the solution for small in the formwhere does not depend on and is the solution of the problem for . One then substitutes this expansion into equations (2) and (3), which expands for small and collects coefficients of each power of . Since these equations must hold for all values of , each coefficient of ϵ must vanish independently because sequences of ϵ are linearly independent. These usually are simpler equations governing which can be solved successively.

4. Design of the Problem

The equations of continuity and momentum are presented in the following way:with the boundary conditions [7]

Now the following dimensionless parameters are introduced [20]:

Then, equations (5)–(8) becomeand the boundary conditions (9) take the formswhere

Since is a small number, solutions are assumed as follows:

For , the problem becomes two-dimensional because of constant suction velocity given in equation (1), which is resulted as follows:subject to boundary conditions

Consider the following form of the solution:where is a small elastic parameter. Using equation (20) in equations (18) and (19) and correlating the coefficients of and , the following boundary value problems are obtained:

Solving equations (21) and (22), we get

Therefore, in the light of equations (23) and (24), equation (20) gives

When equation (17) is substituted into equations (11)–(14) to get the system of partial differential equations corresponding to terms of first order:

The corresponding conditions on the boundary (15) take the form

5. Cross Flow Solution

The cross flow velocity components and along with pressure are considered and presented in the following way:

Substituting equations (31) and (32) in equations (28) and (29), we obtain

Eliminating the terms and from equations (34) and (35), we get

The conditions on the boundary of the plate become

We assume that

Then, the corresponding conditions on the boundary take the form

From equations (36) and (38) with the boundary conditions (39), we obtain

The expression of is not presented here for the purpose of saving space. Substituting equation (40) in equations (31) and (32), we get

6. Main Flow Solution

The solution of equation (27) with conditions on the boundary (30) is considered in this section. The main flow velocity component is assumed as

Then, the conditions on the boundary of the plate are reduced to

Furthermore, it is assumed that

Then, the analogous boundary conditions (30) are

In view of equations (25), (41), and (43)–(46), equation (27) yields

It should be noted that the limiting velocity as and differs from that computed by Gersten and Gross [1]. This is because of some calculation mistakes in their work.

7. Results and Discussion

The 3D steady, laminar MHD flow of incompressible second-grade fluid across a horizontal plate with infinite length subjected to variable suction is analyzed. A well-known perturbation technique is employed to solve the governing equations for the velocity profile and pressure. Graphical and tabular illustrations are used to analyze the behavior of different proficient parameters of interest.

7.1. Main Flow Velocity Field

The velocity profiles are presented for dimensionless parameters for the dynamics of the present flow problem such as the suction parameter α, second-grade parameter , Reynolds number , and magnetic parameter . The ranges of the parameters of interest appearing in the model are considered according to the adjustment of physical quantities in the present fluidic problem. The values of the suction parameter are small because of the boundary layer region which is close to the plane wall. Since the holes in the semi-infinite plate vary in size and shape, variable suction velocity distribution is considered close to the region of the plate, but the value of suction velocity becomes uniform when one moves in the region away from the plane wall. These proposed variations are presented in Figures 25. The impact of the suction variable α on the main velocity component u is shown in Figure 2. The component of velocity u decreases with the increase of α. Figure 3 shows the influence of the second-grade parameter on the velocity in the main flow direction . It is shown that the magnitude of this flow velocity increases near the plate, but a reverse trend is noticed when one goes away from the plane wall. Figure 4 exhibits the impact of the magnetic parameter on the velocity component based on the main flow direction . In Figure 4, it can be seen that the velocity based on the main flow direction is accelerating function of the magnetic parameter . Figure 5 depicts that the main flow velocity component retards in the neighborhood of the plate as increases, and a reverse trend is seen as its position moves away from the plate. Furthermore, as .

7.2. Cross Flow Velocity Field

The velocity profile in the direction of cross flow is presented for dimensionless parameters for the dynamics of the present flow problem such as the suction parameter α, second-grade parameter , Reynolds number , and magnetic parameter . These proposed variants are presented in Figures 69. The impact of the suction variable α on the cross flow velocity component is shown in Figure 6. The component of velocity decreases near the surface of the plate, but a reverse impact is observed when one enters the region away from the plate because of the suction velocity parameter α. Figure 7 shows the impact of the elastic parameter K on the velocity in the cross flow direction . It is shown that the dominant impact of the second-grade parameter K in the region close to the plate is seen, and it is also observed that cross flow velocity is decreasing function of the non-Newtonian parameter . It is interesting to see that Figures 8 and 9 reflect almost a similar impact of the magnetic parameter and Reynolds number on the cross velocity component. In both figures, the cross flow velocity accelerates as one moves in the region away from the plate. The impact of the suction parameter α, second-grade parameter K, and Hartmann number on the velocity component based on the cross flow direction is presented in Table 1. It depicts that increases as α increases. Also, the effect of on is noted. It decreases in the region close to the wall but increases away from the plate, and opposite behavior of cross flow velocity is observed for different values of Hartmann number. However, it decreases in the y direction.


yK = 0.1, , K = 0.1, , K = 0.5, , K = 0.5, ,

0.00.00.00.00.0
0.50.0032160.0162610.0162280.016071
1.00.0013520.0065970.0068890.007011
1.50.0004420.0020760.0022010.002322
2.00.0001330.0005990.0006300.000698

8. Concluding Remarks

The 3D steady, laminar magnetohydrodynamic flow of an incompressible non-Newtonian second-grade fluid subjected to variable suction velocity is investigated. The key outcomes of this analysis are as follows:(i)The velocity component based on the main flow direction decreases with the increase of the suction parameter α.(ii)It is shown that the magnitude of the velocity component based on the main flow direction increases near the plate, but the main flow velocity decreases when one goes away from the plate.(iii)The main flow velocity is increasing function of the magnetic parameter .(iv)The limiting result of the velocity components as and is look-alike to that observed by Gersten and Gross [1] and also that computed by Singh [4] in the case of time independence.(v)The Newtonian outcomes [1] are retrieved when and .(vi)The main flow velocity of the fluidic system u declines near the plane wall as increases, and it accelerates as one moves away at a distance from the wall. Furthermore, as .(vii)The component of velocity decreases near the surface of the plate, but a reverse effect is seen when one enters the region away from the plate because of the suction velocity parameter α.(viii)A similar impact of the magnetic parameter and Reynolds number on the velocity component based on cross flow is observed.

Appendix

Nomenclature

L:Wavelength of suction velocity distribution
:Reynolds number
:Hartmann number
:Second-grade parameter
α:Suction parameter
:Uniform magnetic field applied in the direction
U:Free stream velocity
:Suction velocity
:The dimensional velocity components along directions

Greek symbols

μ:Coefficient of viscosity
:Kinematic viscosity
ρ:Density
σ:Electrical conductivity.

Data Availability

All the data used to support the findings of this research work are included in this article.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

  1. K. Gersten and J. F. Gross, “Flow and heat transfer along a plane wall with periodic suction,” Zeitschrift für Angewandte Mathematik und Physik ZAMP, vol. 25, no. 3, pp. 399–408, 1974. View at: Publisher Site | Google Scholar
  2. P. Singh, J. K. Mishra, and K. A. Narayan, “Three-dimensional convective flow and heat transfer in a porous medium,” Indian Journal of Pure and Applied Mathematics, vol. 19, no. 11, pp. 1130–1135, 1988. View at: Google Scholar
  3. K. D. Singh, “Three-dimensional MHD free convection flow along a vertical porous plate,” Proceedings-Indian National Science Academy. Part A, Physical Sciences, vol. 57, no. 4, pp. 547–552, 1991. View at: Google Scholar
  4. K. D. Singh, “Hydromagnetic effects on the three-dimensional flow past a porous plate,” ZAMP Zeitschrift für Angewandte Mathematik und Physik, vol. 41, no. 3, pp. 441–446, 1990. View at: Publisher Site | Google Scholar
  5. K. D. Singh, “Hydromagnetic free convective flow past a porous plate,” Indian Journal of Pure and Applied Mathematics, vol. 22, no. 7, pp. 591–599, 1991. View at: Google Scholar
  6. K. A. Helmy, “On the flow of an electrically conducting fluid and heat transfer along a plane wall with periodic suction,” Meccanica, vol. 28, no. 3, pp. 227–232, 1993. View at: Publisher Site | Google Scholar
  7. C. Maatki, L. Kolsi, H. F. Oztop et al., “Effects of magnetic field on 3D double diffusive convection in a cubic cavity filled with a binary mixture,” International Communications in Heat and Mass Transfer, vol. 49, pp. 86–95, 2013. View at: Publisher Site | Google Scholar
  8. L. Kolsi, A. Abidi, N. Borjini, and B. Aïssia, “The effect of an external magnetic field on the entropy generation in three-dimensional natural convection,” Thermal Science, vol. 14, no. 2, pp. 341–352, 2010. View at: Publisher Site | Google Scholar
  9. A. A. A. A. Al-Rashed, K. Kalidasan, L. Kolsi et al., “Three-dimensional investigation of the effects of external magnetic field inclination on laminar natural convection heat transfer in CNT-water nanofluid filled cavity,” Journal of Molecular Liquids, vol. 252, pp. 454–468, 2018. View at: Publisher Site | Google Scholar
  10. A. A. A. A. Al-Rashed, L. Kolsi, H. F. Oztop et al., “3D magneto-convective heat transfer in CNT-nanofluid filled cavity under partially active magnetic field,” Physica E: Low-Dimensional Systems and Nanostructures, vol. 99, pp. 294–303, 2018. View at: Publisher Site | Google Scholar
  11. A. J. Chamkha and A. R. A. Khaled, “Hydromagnetic combined heat and mass transfer by natural convection from a permeable surface embedded in a fluid-saturated porous medium,” International Journal of Numerical Methods for Heat & Fluid Flow, vol. 10, no. 5, pp. 455–477, 2000. View at: Publisher Site | Google Scholar
  12. P. S. Reddy, P. Sreedevi, and A. J. Chamkha, “MHD boundary layer flow, heat and mass transfer analysis over a rotating disk through porous medium saturated by Cu-water and Ag-water nanofluid with chemical reaction,” Powder Technology, vol. 307, pp. 46–55, 2017. View at: Publisher Site | Google Scholar
  13. R. Tajammal, M. A. Rana, N. Z. Khan, and M. Shoaib, “Slip effect on combined heat and mass transfer in three dimensional MHD porous flow having heat,” in Proceedings of the 2018 15th International Bhurban Conference on Applied Sciences and Technology (IBCAST), pp. 635–644, IEEE, Islamabad, Pakistan, January 2018. View at: Google Scholar
  14. S. Das, B. Tarafdar, and R. N. Jana, “Hall effects on unsteady MHD rotating flow past a periodically accelerated porous plate with slippage,” European Journal of Mechanics—B/Fluids, vol. 72, pp. 135–143, 2018. View at: Publisher Site | Google Scholar
  15. R. Gayathri, A. Govindarajan, and R. Sasikala, “Three-dimensional Couette flow of dusty fluid with heat transfer in the presence of magnetic field,” Journal of Physics: Conference Series, vol. 1000, no. 1, Article ID 012147, 2018. View at: Publisher Site | Google Scholar
  16. R. Nandkeolyar, M. Narayana, S. S. Motsa, and P. Sibanda, “Magnetohydrodynamic mixed convective flow due to a vertical plate with induced magnetic field,” Journal of Thermal Science and Engineering Applications, vol. 10, no. 6, Article ID 061005, 2018. View at: Publisher Site | Google Scholar
  17. Y. Swapna, M. C. Raju, R. P. Sharma, and S. V. K. Varma, “Chemical reaction, thermal radiation and injection/suction effects on MHD mixed convective oscillatory flow through a porous medium bounded by two vertical porous plates,” Bulletin of the Calcutta Mathematical Society, vol. 109, no. 3, pp. 189–210, 2017. View at: Google Scholar
  18. S. Agarwalla and N. Ahmed, “MHD mass transfer flow past an inclined plate with variable temperature and plate velocity embedded in a porous medium,” Heat Transfer-Asian Research, vol. 47, no. 1, pp. 27–41, 2018. View at: Publisher Site | Google Scholar
  19. K. Chand and N. Thakur, “Effects of rotation, radiation and Hall current on MHD flow of A viscoelastic fluid past an infinite vertical porous plate through porous medium with heat absorption, chemical reaction and variable suction,” The Journal of the Indian Mathematical Society, vol. 85, no. 1-2, pp. 16–31, 2018. View at: Publisher Site | Google Scholar
  20. A. Al-Mudhaf and A. J. Chamkha, “Similarity solutions for MHD thermosolutal Marangoni convection over a flat surface in the presence of heat generation or absorption effects,” Heat and Mass Transfer, vol. 42, no. 2, pp. 112–121, 2005. View at: Publisher Site | Google Scholar
  21. A. Chamkha, “MHD flow of a micropolar fluid past a stretched permeable surface with heat generation or absorption,” Nonlinear Analysis: Modelling and Control, vol. 14, no. 1, pp. 27–40, 2009. View at: Google Scholar
  22. H. S. Takhar, A. J. Chamkha, and G. Nath, “Unsteady flow and heat transfer on a semi-infinite flat plate with an aligned magnetic field,” International Journal of Engineering Science, vol. 37, no. 13, pp. 1723–1736, 1999. View at: Publisher Site | Google Scholar
  23. A. J. Chamkha, “Coupled heat and mass transfer by natural convection about a truncated cone in the presence of magnetic field and radiation effects,” Numerical Heat Transfer: Applications, vol. 39, no. 5, pp. 511–530, 2001. View at: Publisher Site | Google Scholar
  24. M. M. Bhatti, M. A. Abbas, and M. M. Rashidi, “A robust numerical method for solving stagnation point flow over a permeable shrinking sheet under the influence of MHD,” Applied Mathematics and Computation, vol. 316, pp. 381–389, 2018. View at: Publisher Site | Google Scholar
  25. M. M. Bhatti, R. Ellahi, and A. Zeeshan, “Study of variable magnetic field on the peristaltic flow of Jeffrey fluid in a non-uniform rectangular duct having compliant walls,” Journal of Molecular Liquids, vol. 222, pp. 101–108, 2016. View at: Publisher Site | Google Scholar
  26. G. D. Gupta and R. Johari, “MHD three dimensional flow past a porous plate,” Indian Journal of Pure and Applied Mathematics, vol. 32, no. 3, pp. 377–386, 2001. View at: Google Scholar
  27. M. Guria and R. N. Jana, “Hydrodynamic effect on the three-dimensional flow past a vertical porous plate,” International Journal of Mathematics and Mathematical Sciences, vol. 2005, no. 20, pp. 3359–3372, 2005. View at: Publisher Site | Google Scholar
  28. H. P. Greenspan and G. F. Carrier, “The magnetohydrodynamic flow past a flat plate,” Journal of Fluid Mechanics, vol. 6, no. 1, pp. 77–96, 1959. View at: Publisher Site | Google Scholar
  29. V. J. Rossow, “On flow of electrically conducting fluids over a flat plate in the presence of a transverse magnetic field,” 1958, NACA Report No. 1358. View at: Google Scholar
  30. K. D. Singh, “Three dimensional MHD oscillatory flow past a porous plate,” ZAMM Journal of Applied Mathematics and Mechanics/Zeitschrift fr Angewandte Mathematik und Mechanik, vol. 71, no. 3, pp. 192–195, 1991. View at: Google Scholar
  31. A. M. Siddiqui, M. Shoaib, and M. A. Rana, “Three-dimensional flow of Jeffrey fluid along an infinite plane wall with periodic suction,” Meccanica, vol. 52, no. 11-12, pp. 2705–2714, 2017. View at: Publisher Site | Google Scholar
  32. M. Shoaib, M. A. Rana, and A. M. Siddiqui, “The effect of slip condition on the three-dimensional flow of Jeffrey fluid along a plane wall with periodic suction,” Journal of the Brazilian Society of Mechanical Sciences and Engineering, vol. 39, no. 7, pp. 2495–2503, 2017. View at: Publisher Site | Google Scholar
  33. M. A. Rana, Y. Ali, M. Shoaib, and M. Numan, “Magnetohydrodynamic three-dimensional Couette flow of a second-grade fluid with sinusoidal injection/suction,” Journal of Engineering Thermophysics, vol. 28, no. 1, pp. 138–162, 2019. View at: Publisher Site | Google Scholar
  34. Y. Ali, M. A. Rana, and M. Shoaib, “Magnetohydrodynamic three-dimensional Couette flow of a maxwell fluid with periodic injection/suction,” Mathematical Problems in Engineering, vol. 2017, Article ID 1859693, 19 pages, 2017. View at: Publisher Site | Google Scholar
  35. M. Umar, R. Akhtar, Z. Sabir et al., “Numerical treatment for the three-dimensional eyring-powell fluid flow over a stretching sheet with velocity slip and activation energy,” Advances in Mathematical Physics, vol. 2019, Article ID 9860471, 12 pages, 2019. View at: Publisher Site | Google Scholar
  36. K. Yousefi and R. Saleh, “Three-dimensional suction flow control and suction jet length optimization of NACA 0012 wing,” Meccanica, vol. 50, no. 6, pp. 1481–1494, 2015. View at: Publisher Site | Google Scholar
  37. H. Zhang, S. Chen, Q. Meng, and S. Wang, “Flow separation control using unsteady pulsed suction through endwall bleeding holes in a highly loaded compressor cascade,” Aerospace Science and Technology, vol. 72, pp. 455–464, 2018. View at: Publisher Site | Google Scholar
  38. S. Koganezawa, A. Mitsuishi, T. Shimura, K. Iwamoto, H. Mamori, and A. Murata, “Pathline analysis of traveling wavy blowing and suction control in turbulent pipe flow for drag reduction,” International Journal of Heat and Fluid Flow, vol. 77, pp. 388–401, 2019. View at: Publisher Site | Google Scholar
  39. R. S. R. Gorla and A. Chamkha, “Natural convective boundary layer flow over a nonisothermal vertical plate embedded in a porous medium saturated with a nanofluid,” Nanoscale and Microscale Thermophysical Engineering, vol. 15, no. 2, pp. 81–94, 2011. View at: Publisher Site | Google Scholar
  40. P. S. Reddy and A. J. Chamkha, “Soret and Dufour effects on MHD convective flow of Al2O3–water and TiO2–water nanofluids past a stretching sheet in porous media with heat generation/absorption,” Advanced Powder Technology, vol. 27, no. 4, pp. 1207–1218, 2016. View at: Publisher Site | Google Scholar
  41. A. J. Chamkha, S. Abbasbandy, A. M. Rashad, and K. Vajravelu, “Radiation effects on mixed convection about a cone embedded in a porous medium filled with a nanofluid,” Meccanica, vol. 48, no. 2, pp. 275–285, 2013. View at: Publisher Site | Google Scholar
  42. A. J. Chamkha, C. Issa, and K. Khanafer, “Natural convection from an inclined plate embedded in a variable porosity porous medium due to solar radiation,” International Journal of Thermal Sciences, vol. 41, no. 1, pp. 73–81, 2002. View at: Publisher Site | Google Scholar
  43. A. J. Chamkha, R. A. Mohamed, and S. E. Ahmed, “Unsteady MHD natural convection from a heated vertical porous plate in a micropolar fluid with Joule heating, chemical reaction and radiation effects,” Meccanica, vol. 46, no. 2, pp. 399–411, 2011. View at: Publisher Site | Google Scholar
  44. A. J. Chamkha and A. R. A. Khaled, “Similarity solutions for hydromagnetic mixed convection heat and mass transfer for Hiemenz flow through porous media,” International Journal of Numerical Methods for Heat & Fluid Flow, vol. 10, no. 1, pp. 94–115, 2000. View at: Publisher Site | Google Scholar
  45. A. Chamkha, “Solar radiation assisted natural convection in uniform porous medium supported by a vertical flat plate,” Journal of Heat Transfer, vol. 119, no. 1, pp. 89–96, 1997. View at: Publisher Site | Google Scholar
  46. M. A. Abbas, Y. Q. Bai, M. M. Bhatti, and M. M. Rashidi, “Three dimensional peristaltic flow of hyperbolic tangent fluid in non-uniform channel having flexible walls,” Alexandria Engineering Journal, vol. 55, no. 1, pp. 653–662, 2016. View at: Publisher Site | Google Scholar
  47. M. Bhatti and D. Lu, “Analytical study of the head-on collision process between hydroelastic solitary waves in the presence of a uniform current,” Symmetry, vol. 11, no. 3, p. 333, 2019. View at: Publisher Site | Google Scholar
  48. R. Jhorar, D. Tripathi, M. M. Bhatti, and R. Ellahi, “Electroosmosis modulated biomechanical transport through asymmetric microfluidics channel,” Indian Journal of Physics, vol. 92, no. 10, pp. 1229–1238, 2018. View at: Publisher Site | Google Scholar
  49. H. Schlichting, Boundary Layer Theory, Mcgraw-Hill Book Co., New York, NY, USA, 1968.
  50. A. W. Bush, Perturbation Methods for Engineers and Scientists, CRC. Library of Engineering Mathematics, Boca Raton, FL, USA, 1992.
  51. D. Armbruster, Perturbation Methods Bifurcation Theory and Computer Algebraic, Springer, Berlin, Germany, 1987.
  52. M. H. Holmes, Introduction to Perturbation Methods, Springer-Verlag, Berlin, Germany, 2013.

Copyright © 2019 Muhammad Shoaib et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


More related articles

518 Views | 249 Downloads | 0 Citations
 PDF  Download Citation  Citation
 Download other formatsMore
 Order printed copiesOrder

Related articles

We are committed to sharing findings related to COVID-19 as quickly and safely as possible. Any author submitting a COVID-19 paper should notify us at help@hindawi.com to ensure their research is fast-tracked and made available on a preprint server as soon as possible. We will be providing unlimited waivers of publication charges for accepted articles related to COVID-19. Sign up here as a reviewer to help fast-track new submissions.