Mathematical Problems in Engineering

Mathematical Problems in Engineering / 2020 / Article
Special Issue

Computer-aided Structural Integrity and Reliability Analysis of Power and Energy Systems

View this Special Issue

Research Article | Open Access

Volume 2020 |Article ID 1059524 | https://doi.org/10.1155/2020/1059524

Hang Zhou, Yong Xiang, Hao-Feng Li, Rong Yuan, "Task Offloading Strategy of 6G Heterogeneous Edge-Cloud Computing Model considering Mass Customization Mode Collaborative Manufacturing Environment", Mathematical Problems in Engineering, vol. 2020, Article ID 1059524, 8 pages, 2020. https://doi.org/10.1155/2020/1059524

Task Offloading Strategy of 6G Heterogeneous Edge-Cloud Computing Model considering Mass Customization Mode Collaborative Manufacturing Environment

Academic Editor: José A. F. O. Correia
Received21 Jul 2020
Accepted05 Sep 2020
Published15 Sep 2020

Abstract

With the continuous integration of cloud computing, edge computing, and Internet of things (IoT), various mobile applications will emerge in future 6G network. Driven by real-time response and low energy consumption requirements, mobile edge-cloud computing (MECC) will play an important role to improve user experience and reduce costs. However, due to the complexity of applications, the computing capacity of devices cannot meet the low-latency and low energy consumption requirement. Meanwhile, subject to the limited supplement of power and energy system, the heterogeneous multilayer mobile edge-cloud computing (HetMECC) is proposed to join cloud server, edge server, and terminal devices for data calculation and transmission. By dividing computing tasks, terminal applications can receive reliable and efficient computing services. The simulation results show that the proposed model can achieve the low-latency requirement of data calculation and transmission and improve the robustness of architecture.

1. Introduction

The 5G communication technology has three important application prospects: enhanced mobile broadband (EMB), massive machine-type communication (EMTC), and ultrareliable and low latency communication (URLLC) [1].

EMTC can exchange information based on large-scale data between machines without human intervention. In the future 6G era, massive multisource data will occupy a lot of network bandwidth resources and call for more reliable transmission and real-time processing; this is a challenge to the power and energy system and network system. In engineering production, real-time data acquisition and processing is important for reducing the loss caused by failure. The cdn-p2p system based on Hadoop was proposed by Shaikh et al. [2]. However, this method occupies a lot of network bandwidth and computing resources. Georgakopoulos et al. [3] integrated the edge device into the data center. However, there is a long transmission delay to upload the task to the data center. Subramanya et al. [4] put forward MEC, which is a practical edge computing architecture. However, the computing power of the edge server is limited compared with that of the cloud computing center, so it is difficult to process computing intensive tasks.

It is complicated to fulfill business requirements such as abnormal judgment, emergency scheduling optimization, and overall joint control [58]. So, intelligent prediction is needed to grasp the completion of tasks [922].

The data involved in the process management and task scheduling present the multisource and heterogeneous characteristics. So, it is necessary to achieve multisource heterogeneous data fusion [2326]. Time series database (TSDB) is a database for storing time series data. It supports the functions of fast data writing and multidimensional aggregation query. However, it still has the problems of high cost and energy consumption [27].

The HetMECC model based on heterogeneous multilayer edge computing is proposed in this paper. It combines cloud computing with multilayer edge computing to upload unhandled tasks from the lower edge server to the upper edge server. According to data generation rates, the robustness of the system is analyzed from the perspective of computing resources and transmission resources. The computing power can be fully used to avoid network congestion and reduce the system latency.

2. Proposed Methodology

An analytical methodology is proposed to analyze system latency of the HetMECC model, as shown in Figure 1. The dynamic analysis process is shown in Figure 2: first of all, the raw data are obtained through the monitoring of the IOT technology in application scenarios. Secondly, the task offloading model of HetMECC network processes the input dynamic raw data through computation of the system latency method, computation of energy consumption method, and fitness computing method. Finally, PSO algorithm is used for optimized the task offloading plan. Task completion and robust analysis of HetMECC network are given in case study.

The main devices in HetMECC model are classified into three categories: cloud computing center, edge server, and edge device. The servers are sorted form the upper layer (cloud computing server was defined as layer 0) to the lower layer (defined as layer 1 to layer n). Edge devices are located in the lowest layer (defined as layer n + 1). The variable denotes the number of devices connecting to the device i in layer n.

2.1. Computation Task Offloading Model

Computation task offloading strategy was classified into three types: local computation, edge computation task offloading, and multilayers computation task offloading, as shown in Figures 35. The number (1–5) denotes the allocated computation tasks. These tasks can be processed by edge devices, edge server, or cloud server.

The edge device is located in the lowest layer in the HetMECC model, such as multifunction sensors, computer numerical control machine (CNC), and other smart communication devices. The device i is taken as example in Figure 3. It can process the raw data generated by itself and transfer computation result to cloud server. denotes the raw data generation rate of edge device i in layer n + 1. denotes the number of local computation cycles. denotes quantities of computation resources for device i. denotes quantities of the allocated transmission resources for device i from edge server j.

In Figure 4, computation tasks were transferred to edge server j; allocated transmission resources and raw data generation rate were considered for the edge device i.

In Figure 5, the computation task was offloaded by the multilayer scheduling method. The computation result of current layer and other layers, some unprocessed raw data, should be taken into consideration. denotes raw data arrived rate of edge server j from edge device i in layer N. denotes quantities of computation resources for edge server j. denotes quantities of the allocated transmission resources for edge server j from upper server k.

2.2. Computation of System Latency Method

In the HetMECC model, the system latency consisted of computation time, raw data transmission time, and temporary results receiving/sending time. It is assumed as follows:(1)All computation tasks can be divided(2)The quantity of allocated computation tasks will not exceed maximum computation capacity of devices(3)All allocated transmission tasks can be completed

The latency of device i in layer n can be calculated bywhere denotes task offloading ratio, denotes the data volume compression ratio, denotes the quantity of raw data for transmission, denotes the quantity of processed data in layer n, and denotes the quantity of temporary results received.

For any device in layer n, can be calculated bywhere denotes the total system latency of edge servers and edge devices in layer n.

Assume the computation time of cloud computing server is known. The total system latency of the Het MECC model can be calculated by

2.3. Computation of Energy Consumption Method

The energy consumption of devices is classified as follows:(1)Tasks were all offloaded to edge device. denotes the power of edge device i in layer n + 1. The energy consumption can be calculated byThe total energy consumption can be calculated by(2)Tasks were offloaded only to multilayer servers, such as edge servers and cloud computing servers. So, the energy consumption consisted of many parts and can be calculated by

The total energy consumption of edge servers can be calculated by

The total energy consumption of cloud computing servers can be calculated by

2.4. Fitness Computing Method

The traditional qualitative security analysis cannot provide sufficient information in application scenarios. This paper proposed a quantitative security analysis model. It is used as the quality evaluation index of the task offloading model. The safety factor of the device is defined as , and the task is offloaded only once. The safety factor of the whole task offloading model is derived as follows:where denotes the safety factor and the value of ranges from (0, 1]. Tasks were offloaded to edge devices or cloud computing servers when the value is 1. Otherwise, tasks were offloaded to edge servers. So, the sum of should be larger in the task offloading model. This paper proposed a fitness function to evaluate the task offloading model under the time constraint [10, 15] as follows:where and denote device type parameters under determined task offloading strategy, denotes the total energy consumption, denotes the total system latency, and denotes the time constraint.

3. TOMO Algorithm Design

Based on the HetMECC model, the task offloading model optimization (TOMO) algorithm and the particle swarm optimization (PSO) algorithm [28] are used to optimize the task offloading plan and reduce the conflict probabilities of network resource. TOMO algorithm is shown in Table 1.


Algorithm: TOMO

Input: maximum number of iterations , task number T, time constraint , cloud computing server CCs, edge servers ESs, edge devices EDs
Output: optimal offloading scheme
(1) for to do
(2) random initialization of device type parameters and particle speed ;
(3) setting initialization as optimal device type parameters;
(4) end for
(5) for to do
(6) for to do
(7) update data type parameters and particle speed ;
(8) in the process of execution, multiple tasks request the same resource at the same time, and the Multiple layer resources optimal algorithm is used to reduce the conflict;
(9) calculate total system latency considering device type parameter ;
(10) calculate total energy consumption considering device type parameter ;
(11) calculate total safety factor considering device type parameter ;
(12) calculate fitness value according equation (10);
(13) if then
(14) setting as the best offloading scheme ;
(15) end if
(16) end for
(17) The offloading scheme with the lowest fitness value is selected as the global optimal offloading scheme ;
(18) end for
(19) return value of

4. Case Study

4.1. Simulation Environment and Parameter Setting

Computer hardware includes enhanced processor and bulk memory. MATLAB is used for simulation software. In the experiment, each layer publishes 50–200 tasks. The task load is a random value that follows normal distribution. The allocation of computing resources and transmission resources is shown in Table 2. Assume that data transmission bandwidth is 30 Gbps and 3000 Gbps in LAN and WAN. The time constraint is set to 20%∼100% of the mean task completion time on 3.6 GHz CPU, and the value of node safety factor is (0.5, 1].


Node typeComputation resources Transmission resources

Edge device0.13Null
Lowest edge server0.41.6
Midedge server1.74.2
Top edge server5.36.7
Cloud computing server2020

The sequence diagram of simulation experiment for HetMECC model is shown as Figure 6.

4.2. Experimental Results and Analysis

The task offloading strategy TOMO algorithm is compared with local execution (LE), edge server execution (EC), and cloud computing center execution (CC) from aspects of end device energy consumption, task completion, system latency, fitness value, and robustness analysis. Then, the comparison result is obtained.

The end device energy consumption of the four task offloading models is shown in Figure 7. LE has the highest energy consumption value. The reason why EC has higher energy consumption is that all tasks are offloaded and executed in the edge server node. In the HetMECC model, some tasks can be executed in the cloud. The execution ability of the edge server is weaker than that of the cloud server. So, the energy consumption in CC increased.

The task completion time of the four task offloading models is shown in Figure 8. The completion time of LE is the highest and exceeds the time constraint due to the low execution speed of end devices. When the number of published tasks is 50 in each layer, the completion time of HetMECC is lower than EC. When the number of published tasks is 200 in each layer, the completion time of CC is smaller than HetMECC and EC. But, the completion time gap is small.

The system latency comparison is shown in Figures 9 and 10. The TOMO algorithm based on the HetMECC model can reduce the system latency more efficiently. It is useful in the case of high data generation rate under high computing pressure. When the data generation rate is greater than 6, other task offloading models will have network congestion. But, TOMO can reduce the system latency by using multilayer edge servers and cloud computing centers for calculation and transmission. When the data generation rate of double layers in HetMECC network has increased to 11, TOMO can also has better performance. It is indicated that the network robustness has been improved significantly.

The fitness values of the four offloading models are shown in Figure 11. When the number of published tasks ranged from 50 to 200, the fitness value obtained by TOMO is the lowest. When the number of published tasks is 50, the fitness value of TOMO is 39.2% lower than CC and 17.6% lower than EC. When the number of published tasks is 200, the fitness value of TOMO was 7.4% lower than CC and 14.3% lower than EC.

So, the task offloading model proposed in this paper can execute the task more efficiently. Terminal devices’ energy consumption, task completion time, system latency, and network robustness have been optimized.

5. Conclusion

In this paper, the fitness calculation method is improved based on the HetMECC mode considering the requirement of low-latency and low energy consumption in future 6G heterogeneous network. Taking the energy consumption and safety factor of terminal devices as the evaluation index, system latency computation equation and TOMO algorithm were proposed to optimize the model. The energy consumption, task completion time, system latency, and network robustness are optimized according to the experiment result.

Data Availability

The data used to support the study are available within the article.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This research was supported by the National Key Research Development Plan Funds under Grant 2018YFB1702804 and the Applied Basic Research Programs of Sichuan Province’s Science and Technology Department under Grant 2019YJ0666.

References

  1. P. F. Wang, B. Y. Di, L. Y. Song, and Z. Han, “6G heterogeneous edge computing,” Chinese Journal on Internet of Things, vol. 4, no. 1, pp. 121–130, 2020. View at: Google Scholar
  2. A. Shaikh, R. Tewari, and M. Agrawal, “On the effectiveness of DNS-based server selection,” in Proceedings of the 20th Annual Joint Conference of the IEEE-Computer-Society/IEEE-Communication-Society, pp. 1801–1810, Anchorage, American, April 2001. View at: Publisher Site | Google Scholar
  3. D. Georgakopoulos, P. P. Jayaraman, M. Fazia, M. Villari, and R. Ranjan, “Internet of things and edge cloud computing roadmap for manufacturing,” IEEE Cloud Computing, vol. 3, no. 4, pp. 66–73, 2016. View at: Publisher Site | Google Scholar
  4. T. Subramanya, L. Goratti, S. N. Khan, E. Kafetzakis, I. Giannoulakis, and R. Riggio, “A practical architecture for mobile edge computing,” in Proceedings of the IEEE Conference Network Function Virtualization and Software Defined Networks (NFV-SDN), pp. 174–177, Berlin, Germany, November 2017. View at: Publisher Site | Google Scholar
  5. R. Yuan and H. Li, “A multidisciplinary coupling relationship coordination algorithm using the hierarchical control methods of complex systems and its application in multidisciplinary design optimization,” Advances in Mechanical Engineering, vol. 9, no. 1, pp. 1–11, 2017. View at: Publisher Site | Google Scholar
  6. R. Yuan, H. Li, Z. Gong, M. Tang, and W. Li, “An enhanced Monte Carlo simulation–based design and optimization method and its application in the speed reducer design,” Advances in Mechanical Engineering, vol. 9, no. 9, pp. 1–7, 2017. View at: Publisher Site | Google Scholar
  7. R. Yuan, H. Li, and Q. Wang, “An enhanced genetic algorithm-based multi-objective design optimization strategy,” Advances in Mechanical Engineering, vol. 10, no. 7, pp. 1–6, 2018. View at: Publisher Site | Google Scholar
  8. H. Lu, C. Gu, F. Luo, W. Ding, and X. Liu, “Optimization of lightweight task offloading strategy for mobile edge computing based on deep reinforcement learning,” Future Generation Computer Systems, vol. 102, pp. 847–861, 2020. View at: Publisher Site | Google Scholar
  9. F. Yang, P. Cai, H. Qian, and X. Luo, “Task offloading strategy and pricing scheme in fog-enabled networks,” in Proceedings of the IEEE Global Communications Conference (GLOBECOM), pp. 1–6, Waikoloa, HI, USA, December 2019. View at: Publisher Site | Google Scholar
  10. T.-P. Pham, J. J. Durillo, and T. Fahringer, “Predicting workflow task execution time in the cloud using A two-stage machine learning approach,” IEEE Transactions on Cloud Computing, vol. 8, no. 1, pp. 256–268, 2017. View at: Google Scholar
  11. B. P. Rimal and M. Maier, “Workflow scheduling in multi-tenant cloud computing environments,” IEEE Transactions on Parallel & Distributed Systems, vol. 28, no. 1, pp. 290–304, 2016. View at: Google Scholar
  12. L. Tang and S. He, “Multi-user computation offloading in mobile edge computing: a behavioral perspective,” IEEE Network, vol. 32, no. 1, pp. 48–53, 2018. View at: Publisher Site | Google Scholar
  13. S. Bi and Y. J. Zhang, “Computation rate maximization for wireless powered mobile-edge computing with binary computation offloading,” IEEE Transactions on Wireless Communications, vol. 17, no. 6, pp. 4177–4190, 2018. View at: Publisher Site | Google Scholar
  14. X. Meng, W. Wang, Y. Wang, V. K. N. Lau, and Z. Zhang, “Closed-form delay-optimal computation offloading in mobile edge computing systems,” IEEE Transactions on Wireless Communications, vol. 18, no. 10, pp. 4653–4667, 2019. View at: Publisher Site | Google Scholar
  15. S.-P. Zhu, B. Keshtegar, S. Chakraborty, and N.-T. Trung, “Novel probabilistic model for searching most probable point in structural reliability analysis,” Computer Methods in Applied Mechanics and Engineering, vol. 366, Article ID 113027, 2020. View at: Publisher Site | Google Scholar
  16. R. Liu, P. Chen, X. Zhang, and S. Zhu, “Non-shock ignition probability of octahydro-1,3,5,7-tetranitro-tetrazocine-based polymer bonded explosives based on microcrack stochastic distribution,” Propellants, Explosives, Pyrotechnics, vol. 45, no. 4, pp. 568–580, 2020. View at: Publisher Site | Google Scholar
  17. D. Meng, Y. Li, S.-P. Zhu, Z. Hu, T. Xie, and Z. Fan, “Collaborative maritime design using sequential optimisation and reliability assessment,” Proceedings of the Institution of Civil Engineers—Maritime Engineering, vol. 173, no. 1, pp. 3–12, 2020. View at: Publisher Site | Google Scholar
  18. D. Meng, Z. Hu, P. Wu, S.-P. Zhu, J. A. F. O. Correia, and A. M. P. De Jesus, “Reliability-based optimisation for offshore structures using saddlepoint approximation,” Proceedings of the Institution of Civil Engineers—Maritime Engineering, vol. 173, no. 2, pp. 33–42, 2020. View at: Publisher Site | Google Scholar
  19. D. Meng, T. Xie, P. Wu, S.-P. Zhu, Z. Hu, and Y. Li, “Uncertainty-based design and optimization using first order saddlepoint approximation method for multidisciplinary engineering systems,” ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering, vol. 6, no. 3, Article ID 04020028, 2020. View at: Publisher Site | Google Scholar
  20. H. Li, R. Yuan, and J. Fu, “A reliability modeling for multi-component systems considering random shocks and multi-state degradation,” IEEE Access, vol. 7, pp. 168805–168814, 2019. View at: Publisher Site | Google Scholar
  21. R. Yuan, M. Tang, H. Wang, and H. Li, “A reliability analysis method of accelerated performance degradation based on bayesian strategy,” IEEE Access, vol. 7, pp. 169047–169054, 2019. View at: Publisher Site | Google Scholar
  22. R. Yuan, H. Li, and Q. Wang, “Simulation-based design and optimization and fatigue characteristics for high-speed backplane connector,” Advances in Mechanical Engineering, vol. 11, no. 6, pp. 1–10, 2019. View at: Publisher Site | Google Scholar
  23. J. Xu, S. Wang, B. K. Bhargava, and F. Yang, “A blockchain-enabled trustless crowd-intelligence ecosystem on mobile edge computing,” IEEE Transactions on Industrial Informatics, vol. 15, no. 6, pp. 3538–3547, 2019. View at: Publisher Site | Google Scholar
  24. V. Vassilakis, I. P. Chochliouros, A. S. Spiliopoulou et al., “Security analysis of mobile edge computing in virtualized small cell networks,” in Proceedings of the 12th IFIP WG 12.5 International Conference on Artificial Intelligence Applications and Innovations (AIAI), pp. 653–665, Thessaloniki, Greece, September 2016. View at: Publisher Site | Google Scholar
  25. R. Yang, F. R. Yu, P. Si, Z. Yang, and Y. Zhang, “Integrated blockchain and edge computing systems: a survey, some research issues and challenges,” IEEE Communications Surveys & Tutorials, vol. 21, no. 2, pp. 1508–1532, 2019. View at: Publisher Site | Google Scholar
  26. P. P. Ray, D. Dash, and D. De, “Edge computing for Internet of Things: a survey, e-healthcare case study and future direction,” Journal of Network and Computer Applications, vol. 140, pp. 1–22, 2019. View at: Publisher Site | Google Scholar
  27. S. Rinaldi, F. Bonafini, P. Ferrari, A. Flammini, E. Sisinni, and D. Bianchini, “Impact of data model on performance of time series database for internet of things applications,” in Proceedings of the 2019 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), pp. 1–6, Auckland, New Zealand, May 2019. View at: Publisher Site | Google Scholar
  28. J. Xu, X. Li, R. Ding, and X. Li, “Energy efficient multi-resource computation offloading strategy in mobile edge computing,” Computer Integrated Manufacturing Systems, vol. 25, no. 4, pp. 954–961, 2019. View at: Google Scholar

Copyright © 2020 Hang Zhou et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


More related articles

46 Views | 22 Downloads | 0 Citations
 PDF Download Citation Citation
 Download other formatsMore
 Order printed copiesOrder

Related articles

We are committed to sharing findings related to COVID-19 as quickly as possible. We will be providing unlimited waivers of publication charges for accepted research articles as well as case reports and case series related to COVID-19. Review articles are excluded from this waiver policy. Sign up here as a reviewer to help fast-track new submissions.