Mathematical Problems in Engineering

Mathematical Problems for Complex Networks

Publishing date
01 Dec 2011
Submission deadline
01 Jun 2011

Lead Editor

1Department of Information Systems and Computing, Brunel University, Uxbridge UB8 3PH, UK

2Department of Mathematics, Yangzhou University, Yangzhou 225009, China

3Department of Mathematics, Southeast University, Nanjing, China

Mathematical Problems for Complex Networks


Complex networks do exist in our lives. The brain is a neural network. The global economy is a network of national economies. Computer viruses routinely spread through the Internet. Food webs, ecosystems, and metabolic pathways can be represented by networks. Energy is distributed through transportation networks in living organisms, man-made infrastructures, and other physical systems. Dynamic behaviors of complex networks, such as stability, periodic oscillation, bifurcation, or even chaos, are ubiquitous in the real world and often reconfigurable. Networks have been studied in the context of dynamical systems in a range of disciplines. However, until recently, there has been relatively little work that treats dynamics as a function of network structure, where the states of both the nodes and the edges can change, and the topology of the network itself often evolves in time. Some major problems have not been fully investigated, such as the behavior of stability, synchronization and chaos control for complex networks, as well as their applications in, for example, communication and bioinformatics.

Complex networks have already become an ideal research area for control engineers, mathematicians, computer scientists, and biologists to manage, analyze, and interpret functional information from real-world networks. Sophisticated computer system theories and computing algorithms have been exploited or emerged in the general area of computer mathematics, such as analysis of algorithms, artificial intelligence, automata, computational complexity, computer security, concurrency and parallelism, data structures, knowledge discovery, DNA and quantum computing, randomization, semantics, symbol manipulation, numerical analysis, and mathematical software. This special issue aims to bring together the latest approaches to understanding complex networks from a dynamic system perspective. Potential topics include, but are not limited to:

  • Synchronization and control
  • Topology structure and dynamics
  • Stability analysis
  • Robustness and fragility

Before submission authors should carefully read over the journal's Author Guidelines, which are located at Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at according to the following timetable:

Mathematical Problems in Engineering
 Journal metrics
Acceptance rate27%
Submission to final decision64 days
Acceptance to publication34 days
Journal Citation Indicator0.400
Impact Factor1.305

Article of the Year Award: Outstanding research contributions of 2020, as selected by our Chief Editors. Read the winning articles.